Publications

Results 1801–2000 of 99,299

Search results

Jump to search filters

FY23 Status Report: SNF Interim Storage Canister Corrosion and Surface Environment Investigations

Bryan, C.R.; Knight, A.W.; Katona, Ryan M.; Smith, Elizabeth D.S.; Schaller, Rebecca S.

Work evaluating spent nuclear fuel (SNF) dry storage canister surface environments and canister corrosion progressed significantly in FY23, with the goal of developing a scientific understanding of the processes controlling initiation and growth of stress corrosion cracking (SCC) cracks in stainless steel canisters in relevant storage environments. The results of the work performed at Sandia National Laboratories (SNL) will guide future work and will contribute to the development of better tools for predicting potential canister penetration by SCC.

More Details

Insights into Constraining Rate Coefficients in Fuel Oxidation Mechanisms Using Genetic Algorithm Optimization

Energy and Fuels

Demireva, Maria; Sheps, Leonid; Hansen, Nils

Accurate fuel oxidation mechanisms can enable predictive capabilities that aid in advancing combustion technologies. High-level computational kinetics can yield reasonable rate coefficients with uncertainties, in some cases, below a factor of 2. Computed rate coefficients can be constrained further by optimizing against experimental data. Here, we explore the application of genetic algorithm (GA) optimization to constrain computed rate coefficients in complex fuel oxidation mechanisms in conjunction with temperature-dependent species mole fractions from jet-stirred reactor (JSR) measurements. Cyclohexane is a model candidate for understanding the reactivity of cyclic fuels. In this work, we optimize the rate coefficients of the most recent literature cyclohexane mechanism, which incorporates theoretically computed rate coefficients for the reaction networks stemming from the first and second O2 addition pathways, against the experimental results of two separate literature JSR studies. Optimization consistency is evaluated by carrying out three GA optimizations: fitting to the temperature-dependent species mole fractions in each JSR experiment separately and simultaneously fitting the species mole fractions in both experiments. Local sensitivity analyses are used to identify five influential low-temperature oxidation reactions for optimization. Although the three optimizations do not yield identical rate coefficients, the direction of change in all five rate coefficients is consistent among the three optimizations. Performance of the models from the three optimizations is assessed against literature ignition delay times with differences in the level of agreement observed among the different optimizations. Comparisons are made with our recent optimization work of a cyclopentane oxidation master-equation model against time-resolved species concentrations, and insights and improvements of the strategy for constraining rate coefficients using GA optimization are discussed.

More Details

Sub-quarter micrometer periodically poled Al0.68Sc0.32N for ultra-wideband photonics and acoustic devices

Journal of Applied Physics

Tang, Zichen; Esteves, Giovanni; Olsson, Roy H.

In this study, we demonstrate the ability of polarity inversion of sputtered aluminum scandium nitride thin films through post-fabrication processes with domain widths as small as 220 nm at a periodicity of 440 nm. An approach using photo- and electron-beam lithography to generate sub-quarter micrometer feature size with adjustable duty cycle through a lift-off process is presented. The film with a coercive field Ec+ of 5.35 MV/cm was exercised first with a 1 kHz triangular double bipolar wave and ultimately poled with a 0.5 kHz double monopolar wave using a Radiant Precision Premier II tester. The metal polar (M-polar) and nitrogen polar (N-polar) domains were identified and characterized through potassium hydroxide wet etching as well as piezoresponse force microscopy (PFM). Well-distinguished boundaries between the oppositely polarized domain regions were confirmed through the phase diagram of the PFM results. The relationship between the electrode width, poling voltage, and domain growth was experimentally studied and statistically analyzed, where 7.96 nm/V domain width broadening vs escalating poling voltage was observed. This method produces extremely high domain spatial resolution in III-nitride materials via poling and is transferable to a CMOS-compatible photolithography process. The spatial resolution of the periodically poled Al0.68Sc0.32N is suitable for second-harmonic generation of deep ultraviolet through quasi-phase-matching and RF MEMS operating in the X-Band spectrum.

More Details

FY23 Simulation of Elastic-Plastic Failure Propagation

Corona, Edmundo; Stershic, Andrew J.

This memo summarizes the simulation of ductile failure propagation work conducted under the ASC project “V&V of Ductile Failure” conducted during FY 23. Physically, the failure propagation consists of crack propagation in the material. In the numerical setting—specifically in a finite element model—propagation can be accomplished through element death when critical conditions occur locally at an element that is then deleted from the simulation. The validation of the finite element models is evaluated by direct comparison between the experimental and simulation results regarding the rate of crack growth and its influence on the load-deflection response of the specimens tested. This work considers two geometries that display stable crack propagation under displacement-controlled conditions. The first geometry consists of hat specimens loaded in compression with nominally identical geometries but made with three different materials: Steel A286, Al 7075-T651 and 304L stainless steel. The three materials represent a range of ductility values that affect the response and crack propagation within the specimen. The crack induced propagates under an essentially mode-II type of deformation. The second geometry consists of a pre-cracked 304L stainless steel compact tension test specimen loaded so as to induce a mode-I deformation at the crack.

More Details

Predicting Failure Using Deep Learning SAND Report

Johnson, Kyle L.; Noell, Philip; Lim, Hojun; Buarque De Macedo, Robert; Maestas, Demitri; Polonsky, Andrew T.; Emery, John M.; Pant, Aniket; Vaughan, Matthew W.; Martinez, Carianne; Potter, Kevin M.; Solano, Javi; Foulk, James W.

Accurate prediction of ductile failure is critical to Sandia’s NW mission, but the models are computationally heavy. The costs of including high-fidelity physics and mechanics that are germane to the failure mechanisms are often too burdensome for analysts either because of the person-hours it requires to input them or because of the additional computational time, or both. In an effort to deliver analysts a tool for representing these phenomena with minimal impact to their existing workflow, our project sought to develop modern data-driven methods that would add microstructural information to business-as-usual calculations and expedite failure predictions. The goal is a tool that receives as input a structural model with stress and strain fields, as well as a machine-learned model, and output predictions of structural response in time, including failure. As such, our project spent substantial time performing high-fidelity, three-dimensional experiments to elucidate materials mechanisms of void nucleation and evolution. We developed crystal-plasticity finite-element models from the experimental observations to enrich the findings with fields not readily measured. We developed engineering length-scale simulations of replicated test specimens to understand how the engineering fields evolve in the presence of fine-scale defects. Finally, we developed deep learning convolutional neural networks, and graph-based neural networks to encode the findings of the experiments and simulations and make forward predictions in time for structural performance. This project demonstrated the power of data-driven methods for model development, which have the potential to vastly increase both the accuracy and speed of failure predictions. These benefits and the methods necessary to develop them are highlighted in this report. However, many challenges remain to implementing these in real applications, and these are discussed along with potential methods for overcoming them.

More Details

Molybdenum Sleeve Experiments in Fully-Reflected Water-Moderated Triangular-Pitched U(6.90)O2 Fuel Rod Lattices (1.55 cm Pitch)

Harms, Gary A.; Foulk, James W.

The US Department of Energy (DOE) Nuclear Energy Research Initiative funded the design and construction of the Seven Percent Critical Experiment (7uPCX) at Sandia National Laboratories. The start-up of the experiment facility and the execution of the experiments described here were funded by the DOE Nuclear Criticality Safety Program. The 7uPCX is designed to investigate critical systems with fuel for light water reactors in the enrichment range above 5 % 235U. The 7uPCX assembly is a water-moderated and -reflected array of aluminum-clad U(6.90 %)O2 fuel rods. Other critical experiments performed in the 7uPCX assembly are documented in LEU-COMP-THERM-078, LEU-COMP-THERM-080, LEU-COMP-THERM-096, LEUCOMP-THERM-097, LEU-COMP-THERM-101, and LEU-COMP-THERM-102. The purpose of these experiments was to measure the effects of molybdenum in nearly-critical systems. The molybdenum was introduced into the fuel arrays as tubular sleeves that surrounded some of the fuel rods in the fuel arrays measured. Four hundred molybdenum tubes nominally 12.7 mm outside diameter, 498 mm long, with 0.762 mm wall thickness were provided for the experiments by the Institut de Radioprotection et de Sûreté Nucléaire (IRSN). Small polyethylene adapters at each end of the tubes were used to center each tube on a fuel rod in the assembly. The critical experiments were done using a set of triangular-pitched grid plates fabricated for these experiments. The grid plate set accommodated a fuel array of a total of 1261 fuel rod positions on a pitch of 0.610 in (1.5494 cm) in a series of 20 hexagonal rings surrounding the central fuel rod. The fuel used in these experiments was fabricated using unirradiated 6.90 % enriched UO2 fuel pellets from fuel elements designed to be used in the internal nuclear superheater section of the Pathfinder boiling water reactor operated in South Dakota by the Northern States Power Company in the 1960s. The fuel elements were obtained from The Pennsylvania State University where they had been stored for many years. The fuel pellets in those fuel elements were removed from the original Incoloy cladding and reclad in 3003 aluminum tubes and end caps for use in the experiments reported here. The five critical experiments in this series were performed in August through December 2022, in the Sandia Critical Experiments (SCX) at the Sandia Pulsed Reactor Facility. Case 1 had no molybdenum sleeves, Case 2 had 208 molybdenum sleeves clustered at the center of the array, Case 3 had 397 molybdenum sleeves clustered at the center of the array, Case 4 had 175 molybdenum sleeves in the central position and in five alternating hexagonal rings, and Case 5 had 331 molybdenum sleeves in the central position and in seven alternating hexagonal rings. All five critical experiments are judged to be acceptable as benchmark experiments.

More Details

Non-equilibrium molecular dynamics studies of thermal diffusion of hydrogen isotopes in low concentration zirconium hydrides

Journal of Nuclear Materials

Zhou, Xiaowang

Tritium permeability in zirconium-based tritium getter critically impacts tritium storage and environmental safety during operation of tritium-producing burnable absorber rods (TPBARs). Previous experiments indicated that during irradiation operation, the hydrogen equilibrium pressured is increased. Further experimental and modeling studies suggested that the enhanced tritium release observed for reactor scale assemblies might be related to a thermal diffusion known as the Soret effect. A direct measurement of the Soret factor, however, has not been performed. To improve TPBAR and other nuclear applications, here we have applied two non-equilibrium molecular dynamics methods to study thermal diffusion of hydrogen isotopes in low-concentration zirconium hydrides. One of the methods produces sufficiently converged results to distinguish crystal orientation, isotope type, and concentration effects. In conclusion, with this method, crystal orientation, isotope type, and concentration effects are discussed.

More Details

Deterministic nanoscale quantum spin-defect implantation and diffraction strain imaging

Nanotechnology

Titze, Michael; Bielejec, Edward S.; Delegan, Nazar; Zhou, Tao; Awschalom, David D.; Whiteley, Samuel J.; Holt, Martin V.; Heremans, F.J.

Local crystallographic features negatively affect quantum spin defects by changing the local electrostatic environment, often resulting in degraded or varied qubit optical and coherence properties. Few tools exist that enable the deterministic synthesis and study of such intricate systems on the nano-scale, making defect-to-defect strain environment quantification difficult. In this paper, we highlight state-of-the-art capabilities from the U.S. Department of Energy’s Nanoscale Science Research Centers that directly address these shortcomings. Specifically, we demonstrate how complementary capabilities of nano-implantation and nano-diffraction can be used to demonstrate the quantum relevant, spatially deterministic creation of neutral divacancy centers in 4H silicon carbide, while investigating and characterizing these systems on the ≤ 25 nm scale with strain sensitivities on the order of 1 × 10 − 6 , relevant to defect formation dynamics. This work lays the foundation for ongoing studies into the dynamics and deterministic formation of low strain homogeneous quantum relevant spin defects in the solid state.

More Details

High-Burnup Spent Fuel Data Project: Sister Rod Final Phase II Test Plan

Bignell, John; Hanson, Brady; Cantonwine, Paul; Montgomery, Rosemary; Torres, Ricardo; Billone, Mike

The Sibling Pin test campaign is a Department of Energy (DOE) research activity within the Spent Fuel and Waste Science and Technology (SFWST) program that is tasked with characterization of high burnup (HBU) fuel in support of the High Burnup Spent Fuel Data Project. Of the 25 fuel rods in the Sibling Pin inventory, approximately 9 rod lengths have been consumed during the first phase (Phase I) of the test campaign leaving approximately 16 rod lengths for the second phase (Phase II) of testing. This plan outlines the Phase II testing and the motivations for performing these tests. Priorities for Phase II testing are based on previously identified knowledge gaps, lessons-learned from Phase I work, the original objectives of the High Burnup Spent Fuel Data Project and the Sibling Pin test campaign, and input from external stakeholders. The priorities for Phase II testing are to obtain data to characterize the effects of annealing on cladding mechanical properties and fuel rod performance, to quantify the creep behavior of cladding materials and fuel rods and the effects of creep deformations on the performance of cladding and fuel rods, and to gather data to support the final closure of the hydride reorientation and radial hydride induced embrittlement gap for HBU fuel rods.

More Details

Thermal behaviors of ethylene vinyl acetate encapsulants in fielded silicon photovoltaic modules

Journal of Applied Polymer Science

Palmiotti, Elizabeth C.; Roberts, Christine; King, Bruce H.

Aging of silicon photovoltaic (PV) module packaging is one of the greatest limiters of PV module service lifetimes. Module characterization typically focuses on power degradation metrics, which do not convey the complexities of often simultaneous degradation mechanisms. In this work, PV modules with pristine references and known fielding histories were investigated by non-destructive and destructive methods. Modules from Canadian Solar, Mission Solar, and Hanwha Q-Cells were fielded for up to three years; select modules were removed from fielding each year for coring to allow for characterization of the encapsulant. Modules are commonly encapsulated with two protective layers of partially-crystalline ethylene vinyl acetate (EVA) polymer that must undergo a crosslinking reaction to achieve desired properties. The extent of crystallinity of the encapsulants as studied by differential scanning calorimetry showed differences between manufacturers and over time. Some encapsulants showed different magnitudes of crystal sizes which changed after fielding; encapsulants with the monodisperse crystal sizes did not change with fielding. This is due to differences in thermal history. These results have implications for stress development during module aging, since EVA crystal melting and crosslinking reactions can result in encapsulant density changes.

More Details

Unsaturated alluvium disposal modelling with improved geological realism

Good, Forest T.; Laforce, Tara C.; Gross, Michael; Miller, Terry A.; Guiltinan, Eric; Swager, Katherine; Stauffer, Philip H.

This report describes specific activities in the Fiscal Year (FY) 2023 associated with the Geologic Disposal Safety Assessment (GDSA) Repository Systems Analysis (RSA) work package funded by the Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Spent Fuel and Waste Disposition (SFWD). The overall objective of the GDSA RSA work package is to develop generic deep geologic repository concepts and system performance assessment (PA) models in several potential host-rock environments, and to simulate and analyze these generic repository concepts and models using the GDSA Framework toolkit and other tools as needed. The specific GDSA goal addressed in this report is reference case development, simulation, and analysis for the unsaturated alluvium (UZ), one of the four potential host-rocks considered by the GDSA. Further, we aim to exercise the simulation tools and methodologies under development by GDSA for PA modelling.

More Details

Microneedle electrochemical aptamer-based sensing: Real-time small molecule measurements using sensor-embedded, commercially-available stainless steel microneedles

Biosensors and Bioelectronics

Downs, Alexandra M.; Bolotsky, Adam; Weaver, Bryan M.; Foulk, James W.; Wolff, Nathan P.; Polsky, Ronen; Miller, Philip R.

Microneedle sensors could enable minimally-invasive, continuous molecular monitoring – informing on disease status and treatment in real-time. Wearable sensors for pharmaceuticals, for example, would create opportunities for treatments personalized to individual pharmacokinetics. Here, we demonstrate a commercial-off-the-shelf (COTS) approach for microneedle sensing using an electrochemical aptamer-based sensor that detects the high-toxicity antibiotic, vancomycin. Wearable monitoring of vancomycin could improve patient care by allowing targeted drug dosing within its narrow clinical window of safety and efficacy. To produce sensors, we miniaturize the electrochemical aptamer-based sensors to a microelectrode format, and embed them within stainless steel microneedles (sourced from commercial insulin pen needles). The microneedle sensors achieve quantitative measurements in body-temperature undiluted blood. Further, the sensors effectively maintain electrochemical signal within porcine skin. This COTS approach requires no cleanroom fabrication or specialized equipment, and produces individually-addressable, sterilizable microneedle sensors capable of easily penetrating the skin. In the future, this approach could be adapted for multiplexed detection, enabling real-time monitoring of a range of biomarkers.

More Details

Electro-Thermal Characterization of Dynamical VO2 Memristors via Local Activity Modeling

Advanced Materials

Brown, Timothy D.; Bohaichuk, Stephanie M.; Islam, Mahnaz; Kumar, Suhas; Pop, Eric; Williams, R.S.

Translating the surging interest in neuromorphic electronic components, such as those based on nonlinearities near Mott transitions, into large-scale commercial deployment faces steep challenges in the current lack of means to identify and design key material parameters. These issues are exemplified by the difficulties in connecting measurable material properties to device behavior via circuit element models. Here, the principle of local activity is used to build a model of VO2/SiN Mott threshold switches by sequentially accounting for constraints from a minimal set of quasistatic and dynamic electrical and high-spatial-resolution thermal data obtained via in situ thermoreflectance mapping. By combining independent data sets for devices with varying dimensions, the model is distilled to measurable material properties, and device scaling laws are established. The model can accurately predict electrical and thermal conductivities and capacitances and locally active dynamics (especially persistent spiking self-oscillations). The systematic procedure by which this model is developed has been a missing link in predictively connecting neuromorphic device behavior with their underlying material properties, and should enable rapid screening of material candidates before employing expensive manufacturing processes and testing procedures.

More Details

Final Seismic Shake Table Test Plan

Kalinina, Elena A.; Ammerman, Douglas; Stovall, Kevin M.; Demosthenous, Byron; Mason, Taylor

The Spent Fuel Waste Disposition (SFWD) program is planning to conduct a full-scale seismic shake table test on the dry storage systems of spent nuclear fuel (SNF) to close the gap related to seismic loads on fuel assemblies in dry storage systems. This test will allow for quantifying the strains and accelerations on surrogate fuel assembly hardware and cladding during earthquakes of different magnitudes and frequency content. Full-scale testing is needed because a dry storage system is a complex and highly nonlinear system making it hard to predict (model) the responses to seismic excitations. The non-linearity arises from the multiple spatial gaps in the system – between fuel rods and the basket, between the basket and dry storage canister, between the dry storage canister and the storage cask (overpack), and ventilation gaps. The non-linearities pose significant limitations on the value of tests with scaled systems.

More Details

Ab initio calculations of low-energy quasiparticle lifetimes in bilayer graphene

Applied Physics Letters

Spataru, Catalin D.; Leonard, Francois

Motivated by recent experimental results we calculate from first-principles the lifetime of low-energy quasiparticles in bilayer graphene (BLG). Here, we take into account the scattering rate arising from electron-electron interactions within the GW approximation for the electron self-energy and consider several p-type doping levels ranging from 0 to ρ ≈ 2.4 × 1012 holes/cm2. In the undoped case we find that the average inverse lifetime scales linearly with energy away from the charge neutrality point, with values in good agreement with experiments. The decay rate is approximately three times larger than in monolayer graphene, a consequence of the enhanced screening in BLG. In the doped case, the dependence of the inverse lifetime on quasiparticle energy acquires a non-linear component due to the opening of an additional decay channel mediated by acoustic plasmons.

More Details

Library of Advanced Materials for Engineering (LAMÉ) 5.16

Lester, Brian T.; Long, Kevin N.; Reedlunn, Benjamin; Scherzinger, William M.; Vignes, Chet; Cundiff, K.N.

Accurate and efficient constitutive modeling remains a cornerstone issue for solid mechanics analysis. Over the years, the LAMÉ advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization of the LAMÉ library in application, this effort seeks to document and verify the various models in the LAMÉ library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.

More Details

Influence of trap-assisted and intrinsic Auger–Meitner recombination on efficiency droop in green InGaN/GaN LEDs

Applied Physics Letters

Li, Xuefeng; Dejong, Elizabeth; Armitage, Rob; Armstrong, Andrew A.; Feezell, Daniel

Here, we study the impact of deep-level defects on trap-assisted Auger–Meitner recombination in c-plane InGaN/GaN LEDs using a small-signal electroluminescence (SSEL) method and deep-level optical spectroscopy (DLOS). Carrier dynamics information, including carrier lifetime, recombination rate, and carrier density, is obtained from SSEL, while DLOS is used to obtain the deep-level defect density. Through fitting the nonradiative recombination rates of wafers with different deep-level defect densities, we obtain the Shockley–Read–Hall (SRH) and trap-assisted Auger–Meitner recombination (TAAR) coefficients. We show that defect-related nonradiative recombination, including both SRH and TAAR, accounts for a relatively small fraction of the total nonradiative recombination, which is dominated by intrinsic Auger–Meitner recombination. The interplay between carrier localization and Coulomb enhancement has a different impact on radiative and intrinsic Auger–Meitner recombination. Evidence is presented that the imbalance between the change of radiative and intrinsic Auger–Meitner recombination is the primary cause of the efficiency droop at high carrier densities in the samples studied.

More Details

Influence of trap-assisted and intrinsic Auger-Meitner recombination on efficiency droop in green InGaN/GaN LEDs

Applied Physics Letters

Li, Xuefeng; Dejong, Elizabeth; Armitage, Rob; Armstrong, Andrew A.; Feezell, Daniel

We study the impact of deep-level defects on trap-assisted Auger-Meitner recombination in c-plane InGaN/GaN LEDs using a small-signal electroluminescence (SSEL) method and deep-level optical spectroscopy (DLOS). Carrier dynamics information, including carrier lifetime, recombination rate, and carrier density, is obtained from SSEL, while DLOS is used to obtain the deep-level defect density. Through fitting the nonradiative recombination rates of wafers with different deep-level defect densities, we obtain the Shockley-Read-Hall (SRH) and trap-assisted Auger-Meitner recombination (TAAR) coefficients. We show that defect-related nonradiative recombination, including both SRH and TAAR, accounts for a relatively small fraction of the total nonradiative recombination, which is dominated by intrinsic Auger-Meitner recombination. The interplay between carrier localization and Coulomb enhancement has a different impact on radiative and intrinsic Auger-Meitner recombination. Evidence is presented that the imbalance between the change of radiative and intrinsic Auger-Meitner recombination is the primary cause of the efficiency droop at high carrier densities in the samples studied.

More Details

The Effects of Silicon and Niobium Concentration on the Solidification Behavior and Microstructure of Cast Monel Alloys

Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science

Farnin, Christopher J.; Coker, Eric N.; Salinas, Perla A.; Du Pont, John

Cast Monel alloys are used in applications requiring a combination of good mechanical properties and excellent resistance to corrosion. Despite prevalent industrial use, relatively few studies have been conducted to investigate the relationships between composition, solidification behavior, and microstructure. Given that these alloys are used in the cast and welded conditions, these factors have a significant influence over the material properties. Here, in this work, microstructural characterization, electron probe microanalysis, X-ray diffraction, and differential scanning calorimetry were used to study how changes in Si and Nb concentrations affected the solidification path and microstructure of Monel alloys. It was found that increasing Nb concentration stabilized higher amounts of MC carbides and suppressed graphite formation during solidification. It was also found that the high nominal concentration and segregation of Si to the liquid led to the formation of Ni31Si12 and other silicides via terminal eutectic reactions at the end of solidification. A pseudo-binary solidification diagram was constructed using experimental data and was applied to predict the mass fraction of solidified eutectic as a function of composition. The modeled microstructures were found to be in good agreement with experimentally measured phase fractions.

More Details

Shock state distributions in porous tantalum and characterization with multipoint velocimetry

Journal of Applied Physics

Moore, Nathan W.; Carleton, James B.; Wise, Jack L.; Mccoy, Chad A.; Vackel, Andrew; Bolintineanu, Dan S.; Kaufman, Morris; Kracum, Michael R.; Battaile, Corbett C.; Rodgers, Theron M.; Sanchez, Jason J.; Mesh, Mikhail; Olson, Aaron; Scherzinger, William M.; Powell, Michael J.; Payne, Sheri L.; Pokharel, Reeju; Brown, Donald W.; Frayer, Daniel K.

Heterogenous materials under shock compression can be expected to reach different shock states throughout the material according to local differences in microstructure and the history of wave propagation. Here, a compact, multiple-beam focusing optic assembly is used with high-speed velocimetry to interrogate the shock response of porous tantalum films prepared through thermal-spray deposition. The distribution of particle velocities across a shocked interface is compared to results obtained using a set of defocused interferometric beams that sampled the shock response over larger areas. The two methods produced velocity distributions along the shock plateau with the same mean, while a larger variance was measured with narrower beams. The finding was replicated using three-dimensional, mesoscopically resolved hydrodynamics simulations of solid tantalum with a pore structure mimicking statistical attributes of the material and accounting for radial divergence of the beams, with agreement across several impact velocities. Accounting for pore morphology in the simulations was found to be necessary for replicating the rise time of the shock plateau. The validated simulations were then used to show that while the average velocity along the shock plateau could be determined accurately with only a few interferometric beams, accurately determining the width of the velocity distribution, which here was approximately Gaussian, required a beam dimension much smaller than the spatial correlation lengthscale of the velocity field, here by a factor of ∼30×, with implications for the study of other porous materials.

More Details

A minimum assumption approach to MEG sensor array design

Physics in Medicine and Biology

Zhdanov, Andrey; Nurminen, Jussi; Iivanainen, Joonas; Taulu, Samu

Objective. Our objective is to formulate the problem of the magnetoencephalographic (MEG) sensor array design as a well-posed engineering problem of accurately measuring the neuronal magnetic fields. This is in contrast to the traditional approach that formulates the sensor array design problem in terms of neurobiological interpretability the sensor array measurements. Approach. We use the vector spherical harmonics (VSH) formalism to define a figure-of-merit for an MEG sensor array. We start with an observation that, under certain reasonable assumptions, any array of m perfectly noiseless sensors will attain exactly the same performance, regardless of the sensors' locations and orientations (with the exception of a negligible set of singularly bad sensor configurations). We proceed to the conclusion that under the aforementioned assumptions, the only difference between different array configurations is the effect of (sensor) noise on their performance. We then propose a figure-of-merit that quantifies, with a single number, how much the sensor array in question amplifies the sensor noise. Main results. We derive a formula for intuitively meaningful, yet mathematically rigorous figure-of-merit that summarizes how desirable a particular sensor array design is. We demonstrate that this figure-of-merit is well-behaved enough to be used as a cost function for a general-purpose nonlinear optimization methods such as simulated annealing. We also show that sensor array configurations obtained by such optimizations exhibit properties that are typically expected of 'high-quality' MEG sensor arrays, e.g. high channel information capacity. Significance. Our work paves the way toward designing better MEG sensor arrays by isolating the engineering problem of measuring the neuromagnetic fields out of the bigger problem of studying brain function through neuromagnetic measurements.

More Details

Accurate Calculation of Solvation Properties of Lithium Ions in Nonaqueous Solutions

Journal of Physical Chemistry. B

Vigil, Daniel L.; Frischknecht, Amalie L.; Stevens, Mark J.

Here, we perform all-atom molecular dynamics simulations of lithium triflate in 1,2-dimethoxyethane using six different literature force fields. This system is representative of many experimental studies of lithium salts in solvents and polymers. We show that multiple historically common force fields for lithium ions give qualitatively incorrect results when compared with those from experiments and quantum chemistry calculations. We illustrate the importance of correctly selecting force field parameters and give recommendations on the force field choice for lithium electrolyte applications.

More Details

OH Roaming and Beyond in the Unimolecular Decay of the Methyl-Ethyl-Substituted Criegee Intermediate: Observations and Predictions

Journal of the American Chemical Society

Liu, Tianlin; Elliott, Sarah N.; Zou, Meijun; Vansco, Michael F.; Sojdak, Christopher A.; Markus, Charles R.; Almeida, Raybel; Au, Kendrew; Sheps, Leonid; Osborn, David L.; Percival, Carl J.; Taatjes, Craig A.; Caravan, Rebecca L.; Klippenstein, Stephen J.; Lester, Marsha I.

Alkene ozonolysis generates short-lived Criegee intermediates that are a significant source of hydroxyl (OH) radicals. This study demonstrates that roaming of the separating OH radicals can yield alternate hydroxycarbonyl products, thereby reducing the OH yield. Specifically, hydroxybutanone has been detected as a stable product arising from roaming in the unimolecular decay of the methyl-ethyl-substituted Criegee intermediate (MECI) under thermal flow cell conditions. The dynamical features of this novel multistage dissociation plus a roaming unimolecular decay process have also been examined with ab initio kinetics calculations. Experimentally, hydroxybutanone isomers are distinguished from the isomeric MECI by their higher ionization threshold and distinctive photoionization spectra. Moreover, the exponential rise of the hydroxybutanone kinetic time profile matches that for the unimolecular decay of MECI. A weaker methyl vinyl ketone (MVK) photoionization signal is also attributed to OH roaming. Complementary multireference electronic structure calculations have been utilized to map the unimolecular decay pathways for MECI, starting with 1,4 H atom transfer from a methyl or methylene group to the terminal oxygen, followed by roaming of the separating OH and butanonyl radicals in the long-range region of the potential. Roaming via reorientation and the addition of OH to the vinyl group of butanonyl is shown to yield hydroxybutanone, and subsequent C-O elongation and H-transfer can lead to MVK. A comprehensive theoretical kinetic analysis has been conducted to evaluate rate constants and branching yields (ca. 10-11%) for thermal unimolecular decay of MECI to conventional and roaming products under laboratory and atmospheric conditions, consistent with the estimated experimental yield (ca. 7%).

More Details

Analysis and Testing of Optimal Power Control Strategy for NASA Moon Base Interconnected DC Microgrid System

SAE Technical Papers

Rashkin, Lee J.; Donnelly, Timothy J.; Cook, Marvin A.; Young, Joseph

As a part of NASA's efforts in space, options are being examined for an Artemis moon base project to be deployed. This project requires a system of interconnected, but separate, DC microgrids for habitation, mining, and fuel processing. This in-place use of power resources is called in-situ resource utilization (ISRU). These microgrids are to be separated by 9-12 km and each contains a photovoltaic (PV) source, energy storage systems (ESS), and a variety of loads, separated by level of criticality in operation. The separate microgrids need to be able to transfer power between themselves in cases where there are generation shortfall, faults, or other failures in order to keep more critical loads running and ensure safety of personnel and the success of mission goals. In this work, a 2 grid microgrid system is analyzed involving a habitation unit and a mining unit separated by a tie line. A set of optimal controls that has been developed, including power flow controls on the tie line, dispatch of PV generation, and dispatch of non-critical loads, is analyzed, and validated in hardware on the Secure Scalable Microgrid Testbed (SSMTB). This testbed includes hardware emulators for a variety of energy sources, energy storage devices, pulsed loads, and other loads.

More Details

Thrust-optimized blade design for wind turbines

Ennis, Brandon L.

A wind rotor is disclosed that produces energy optimally for a given thrust overturning moment. By designing rotors with suboptimal aerodynamic efficiency, they can have optimal thrust performance, which will reduce the substructure cost and/or enable greater energy capture for a given substructure.

More Details

GDSA Repository Systems Analysis Investigations in FY 2023

Laforce, Tara C.; Basurto, Eduardo; Bigler, Lisa A.; Chang, Kyung W.; Ebeida, Mohamed; Jayne, Richard; Leone, Rosemary C.; Mariner, Paul; Sharpe, Jeff H.

This report describes specific activities in the Fiscal Year (FY) 2023 associated with the Geologic Disposal Safety Assessment (GDSA) Repository Systems Analysis (RSA) work package funded by the Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Spent Fuel and Waste Disposition (SFWD).

More Details

Controlled semiconductor quantum dot fabrication utilizing focus ion beam

Lu, Ping

In this project, we experimented the focused ion beam (FIB) based fabrications of semiconductor quantum dots (QDs) by using metal nano particles (NPs) (e.g., Al) on semiconductor as a template and by means of the FIB induced direct metal-to-QD conversion. We have examined effect of the experimental conditions, including Ga+ ion energy and dose as well as substrate temperature. The results of experiments have shown AlGaSb QD formation on GaSb substrate can be achieved under certain conditions but there are many challenges about the techniques, including compositional nonuniformity of the QDs formed, partial conversion of the metal NP to QD, and high defect concentration in the QDs.

More Details

Reinforcement Learning Approach to Cybersecurity in Space (RELACSS)

Musuvathy, Srideep S.; Gomez Rivera, Abel O.; Bailey, Tyson; Verzi, Stephen J.; Sahakian, Meghan A.; Urias, Vincent; Gilley, Gabriel R.; Roy, Christopher C.

Securing satellite groundstations against cyber-attacks is vital to national security missions. However, these cyber threats are constantly evolving. As vulnerabilities are discovered and patched, new vulnerabilities are discovered and exploited. In order to automate the process of discovering existing vulnerabilities and the means to exploit them, a reinforcement learning framework is presented in this report. We demonstrate that this framework can learn to successfully navigate an unknown network and detect nodes of interest despite the presence of a moving target defense. The agent then exfiltrates a file of interest from the node as quickly as possible. This framework also incorporates a defensive software agent that learns to impede the attacking agents progress. This setup allows for the agents to work against each other and improve their abilities. We anticipate that this capability will help uncover unforeseen vulnerabilities and the means to mitigate them. The modular nature of the framework enables users to swap out learning algorithms and modify the reward functions in order to adapt the learning tasks to various use cases and environments. Several algorithms, viz., tabular Q learning, deep Q networks, proximal policy optimization, advantage actor-critic, generative adversarial imitation learning, are explored for the agents and the results highlighted. The agent learns to solve the tasks in a light-weight abstract environment. Once the agent learns to perform sufficiently well, it can be deployed in a minimega virtual machine environment (or a real network) with wrappers that map abstract actions to software commands. The agent also uses a local representation of the actions called a ‘slot-mechanism’. This allows the agent to learn in a certain network and generalize it to different networks. The defensive agent learns to predict the actions taken by an offensive agent and uses that information to anticipate the threat. This information can then either be used to raise an alarm or to take actions to thwart the attack. We believe that with the appropriate reward design, a representative environment, and action set, this framework can be generalized to tackle other cybersecurity tasks. By sufficiently training these agents, we can anticipate vulnerabilities leading to robust future designs. We can also deploy automated defensive agents that can help secure satellite groundstation and their vital national security missions.

More Details

Equitable Electric Grid: Defining, Measuring, and Integrating Equity into Electricity Sector Policy and Planning

Kazimierczuk, Kamila; Demenno, Mercy B.; O'Neil, Rebecca; Pierre, Brian J.

Traditionally, electric grid planning seeks to maintain safe, reliable, efficient, and affordable service for current and future customers. As policies, expectations of the energy system, and the threat landscape evolve, additional objectives for power system planners are emerging, including decarbonization, resilience, and equity. Renewable and clean energy goals, especially in the context of deep decarbonization strategies, are changing the mix of resources on the electric grid and prompting new considerations for grid architecture. The increased frequency and severity of extreme weather events over the last two decades, coupled with cybersecurity concerns, have elevated resilience as a key system need. More recently, there has been greater focus on equity and energy justice in grid planning to ensure that disadvantaged communities are not adversely affected by grid modernization and have equal access to its benefits. In response, new thinking around multi-objective decision planning is exploring improvements in grid planning processes to better integrate approaches to meet decarbonization, resilience, and equity objectives. To provide a foundation for this work, a series of white papers was produced to summarize these emerging objectives.

More Details

Evaluation of a preliminary regional Earth model through comparison of synthetic and observed waveform data

Darrh, Andrea; Vieceli, Rhiannon E.; Preston, Leiph

In this report, we document the process related to developing a regional geologic model of a 605 x 1334 km area centered around Utah and encompassing surrounding states. This model is developed to test the effect that composition of a model has on the generation of synthetic data with the intent of using this information to improve upon full waveform moment tensor inversions. We compare observed data from three seismic events and five stations to the synthetic data generated by a preliminary model derived from a geologic framework model (GFM) developed by the USGS. The synthetic data and observed data comparisons indicate that our preliminary model performs well at smaller offset distances in the northern and central sections of the model. However, the southern stations consistently display synthetic data P- and S-wave arrival times that do not match the observed data arrival times, indicating that the velocity structure of the southern part of the model especially is inaccurate.

More Details

Self-assembled Seashell Like Coatings for Large Area Robust Debris Shields for Next Generation Pulsed Power Drivers

Xu, Guangping; Fan, Hongyou; Mccoy, Chad A.; Schwarz, Jens; Mills, Melissa M.; Boro, Joseph; Ho, Tuan A.; Rosenthal, Justin; Davis, Haley; Xiong, Jenny; Yoon, Alyssa

During this LDRD project, our team developed a technology which enables the fabrication of novel nanostructures replicating seashell – “nature’s toughest material”. The resulting coatings exhibit high thermal stability up to 1650°C, which exceeds the hardness of Spectra® by ~44%, as well as the compressive strength of aluminum by ~57%. Coatings made with this technology are stronger, environmentally friendly, more sustainable, and more versatile than other comparable materials. Beryllium wafers, the current, most favorable shielding material in terms of thermal and mechanical properties, are very toxic and cost hundreds of times more than the new material developed in this project. The coatings on silicon wafer and stainless steel, respectively, have been tested as ride-along on the Z machine and clearly outperform the bare substrate. Use of this technology will have a profound global impact for pulsed power and fusion energy development, debris mitigation for spacecraft and satellites, durability of drill bits used in deep well drilling and tunnel boring operations, thermal protection of aircraft and manned spacecraft, and various other thermal and mechanical protection applications.

More Details

Increasing CO2 Capture Rate in Liquid-Solvent Direct-Air Carbon Capture via Additive Manufacturing

Rodgers, Theron M.; Domino, Stefan P.; Grillet, Anne M.; Mcmaster, Anthony M.; Heiden, Michael J.

Carbon capture is essential to meeting climate change mitigation goals. One approach currently being commercialized utilizes liquid-based solvents to capture CO2 directly from the atmosphere but is limited by slow absorption of CO2 into the liquid. Improved air/solvent liquid mixing increases CO2 absorption rate, and this increased CO2 absorption efficiency allows for smaller carbon capture systems with lower capital costs and better economic viability. In this project, we study the use of passive micromixers fabricated by metal additive manufacturing. The micromixer’s small-scale surface geometric features perturb and mix the liquid film to enhance mass transfer and CO2 absorption. In this project, we evaluated this hypothesis through computational and experimental studies. Computational investigations focused on developing capabilities to simulate thin film (~ 100μm) fluid flow on rough surfaces. Such thin films are in a surface-tension dominated regime and simulations in this regime are prone to instabilities. Improvements to the Nalu code completed in this project resulted in a 10x timestep stability improvement for these problems.

More Details

Analyzing photovoltaic module mechanics using composite plate theories and finite element solutions

Journal of Composite Materials

Hartley, James Y.; Khraishi, Tariq

Deflection and stress calculated from an experimentally validated, high-fidelity finite element model (FEM) of a photovoltaic module experiencing mechanical load was compared to results from a simplified FEM treating the module laminate as a homogenized composite using a rule of mixtures approach, and further compared to analytical calculations treating the module as a Kirchoff-Love flat plate. The goal of this study was to determine the error incurred by analyzing module mechanics with varying levels of simplification, since resolving the aspect ratios of a module is computationally expensive. Homogenized FEMs were found to underpredict peak deflection under a 1.0 kPa load by between 13 and 19% for lower and upper bound application of the rule of mixtures. However, module shape was captured, implying that a useful replication of a resolved model could be achieved with a reduced, calibrated material stiffness. Homogenized stress results captured glass layer tensile stress components to within 46 to 52% at a sample location of interest, though agreement was poor through the remainder of the laminate due to the lack of material resolution. For plate theory, deflection was overpredicted by 45 to 67% for upper and lower bound homogenizations, and frame-adjacent module shapes were not adequately replicated. Stress results mirrored FEM trends but magnitudes were not well correlated to resolved model values. These results support the use of homogenized laminate models for module shape derivation, though resolved models remain necessary for stress analyses. The accuracy of plate theory was found to be inadequate for most applications.

More Details

Efficient kinetic particle simulations of space charge limited emission in magnetically insulated transmission lines using reduced physics models

Physical Review Accelerators and Beams

Evstatiev, Evstati G.; Hess, Mark H.

We explore the use of reduced physics models for efficient kinetic particle simulations of space charge limited (SCL) emission in inner magnetically insulated transmission lines (inner MITLs), with application to Sandia National Laboratories' Z machine. We propose a drift kinetic (guiding center) model of electron motion in place of a fully kinetic model and electrostatic-magnetostatic fields in place of electromagnetic fields. The validity of these approximations is suggested by the operational parameters of the Z machine, namely, current pulse lengths of order 100 ns compared with Larmor periods typically smaller than 10-11 s, typical Larmor radii of a few (tens) of microns (magnetic fields of tens to hundreds of Tesla) compared with MITL dimensions of a few centimeters, and transient time of light waves along the inner MITL of order a fraction of a nanosecond. Guiding center orbits eliminate the fast electron gyromotion, which enables the use of tens to hundreds of times larger time steps in the numerical particle advance. Electrostatic-magnetostatic fields eliminate the Courant-Friedrichs-Lewy (CFL) numerical stability limit on the time step and allow the use of higher grid resolutions or, alternatively, larger time steps in the fields advance. Overall, potential computational cost savings of tens to hundreds of times exists. The applicability of the reduced physics models is examined on two problems. First, in the simulation of space charge limited emission of electrons from the cathode surface due to high electric fields in a radial inner MITL geometry with a short load. In particular, it is shown that a drift kinetic-based particle-in-cell (PIC) model with electrostatic-magnetostatic fields is able to accurately reproduce well-known physics of electron vortex formation, spatially and temporally. Second, deeper understanding is gained of the mechanism behind vortex formation in this MITL geometry by considering an exemplar problem of an electron block of charge. This simpler setup reveals that the main mechanism of vortex formation can be attributed to pure drift motion of the electrons, that is, the (fully kinetic) gyromotion of the electrons is inessential to the process. This exemplar problem also suggests a correlation of the spatial dimensions of vortices to the thickness of the electron layer, as observed in SCL simulations. It also confirms that the electromagnetic nature of the fields does not play an essential role. Finally, an improved hybrid fully kinetic and drift kinetic model for electron motion is proposed, as means of capturing finite Larmor radius (FLR) effects; the particular FLR physics that is missed by the drift kinetic model is the particle-wall interaction. By initializing SCL emitted electrons as fully kinetic and later transitioning them to drift kinetic, according to simple criteria, the accuracy of SCL simulations can be improved, while preserving the potential for computational efficiency.

More Details

Encapsulated Transition Metal Catalysts Enable Long-term Stability in Frontal Polymerization Resins

Macromolecules

Leguizamon, Samuel C.; Davydovich, Oleg; Greenlee, Andrew J.; Jones, Brad H.; Appelhans, Leah; Warner, Matthew J.; Kent, Michael S.; Gallegos, Shantae C.; Jansen, Annika L.; Roach, Devin J.; Root, Harrison; Cardenas, Jorge A.

Frontal polymerization involves the propagation of a thermally driven polymerization wave through a monomer solution to rapidly generate high-performance polymeric materials with little energy input. The balance between latent catalyst activation and sufficient reactivity to sustain a front can be difficult to achieve and often results in systems with poor storage lives. This is of particular concern for frontal ring-opening metathesis polymerization (FROMP) where gelation occurs within a single day of resin preparation due to the highly reactive nature of Grubbs-type catalysts. In this report we demonstrate the use of encapsulated catalysts to provide remarkable latency to frontal polymerization systems, specifically using the highly active dicyclopentadiene monomer system. Negligible differences were observed in the frontal velocities or thermomechanical properties of the resulting polymeric materials. FROMP systems with encapsulated catalyst particles are shown with storage lives exceeding 12 months and front rates that increase over a well-characterized 2 month period. Moreover, the modularity of this encapsulation method is demonstrated by encapsulating a platinum catalyst for the frontal polymerization of silicones by using hydrosilylation chemistry.

More Details

The onset of selective laser flash sintering in undoped and doped lanthanum chromite

International Journal of Ceramic Engineering & Science

Hagen, Deborah A.; Matto, Lezli; Kovar, Desiderio; Beaman, Joseph J.

Previous studies have shown that selective laser flash sintering (SLFS) can be initiated in dielectrics that exhibit ionic or electronic conduction at high temperature. These materials required high laser powers to reach the temperatures where electrical conduction is sufficient to initiate SLFS. In this study, SLFS in lanthanum chromite (LC), an intrinsic electronic conductor with high conductivity, and lanthanum strontium chromite (LSC), which is doped to further increase electronic conductivity, were investigated with a focus on understanding the initiation mechanisms. Results show that the initiation of SLFS in LC and LSC occurs when electronic charge carriers are activated and flow to the electrode where the current is measured. A combination of carriers produced at the electrode, temperature-activated intrinsic charge carriers, and extrinsic charge carriers present in LSC due to doping are responsible for the facile initiation of SLFS.

More Details

Thermogravimetric Analysis (TGA) for Carbon Fiber and Glass Fiber Epoxy Composites and their Constituents

Scott, Sarah N.; Hakes Weston-Dawkes, Raquel S.P.; Houchens, Brent C.

In this work, thermogravimetric analysis (TGA) was performed on samples of a carbon fiber epoxy composite, a glass fiber epoxy composite, and a mixed carbon fiber/glass fiber epoxy composite, as well on each constituent material (polymer epoxy, carbon fibers and glass fibers). TGA was conducted for heating rates from 1-20 C/min with purified purge gases of nitrogen and dry air. For the fiberglass composite, we find that ~70% of the material remains after heating in air to 1200 C. For the carbon fiber epoxy composite, we observe greater mass loss as the carbon fibers can oxidize, leaving little material by the end of the test. The mixed composite, which has a 2:1 ratio of glass fibers to carbon fibers, experienced a total mass loss between the two other composites. By determining the relationship between the thermal decomposition of a composite material and its constituent materials, we can predict the fire behavior of novel composites during the material design phase.

More Details

A direct numerical simulation study for confined non-isothermal jet impingement at moderate nozzle-to-plate distances: Capturing jet-to-ambient density effects

International Journal of Heat and Mass Transfer

Domino, Stefan P.; Wenzel, Everett A.

A direct numerical simulation (DNS) campaign is deployed for a series of confined downward oriented, non-isothermal turbulent impinging jet configurations. A baseline Reynolds number of 9960 is obtained through a precursor DNS pipe flow simulation (Reτ=505). Three jet temperature configurations (confinement height to nozzle diameter of three) enter a cylindrical domain that share ambient and impingement plate temperatures (298.15K). The range of jet temperatures are crafted such that the ratio of inlet to ambient density varies from unity to 0.52, showcasing the effect of density disparity on flow characteristics such as core collapse, radial mixing of momentum and energy, near-wall stagnation behavior, wall-jet profiles, and large-scale vortical structures. Surface quantities provided include mean radial heat flux and wall-shear stress profiles, and heat flux histograms at select radial stations. Results showcase increased radial normal stresses for higher temperature jets that support increased mixing, resulting in large-scale recirculation structures that are smaller, while retaining similar normalized radial wall profiles for shear stress, heat flux and pressure. Radial plots for wall shear stress and Nusselt number showcase strong radial decay as compared to previous configurations that share similar jet and ambient temperatures. For the 373.15 K case, a Gaussian-like histogram for heat fluxes at the impingement plate transitions to a log-normal profile as radial distances increase. In contrast, the 573.15 K configuration displays a bi-modal heat flux characteristic at the impingement plate, and in similar manner to the moderate temperature counterpart, transitions to a log-normal profile at larger radial distances.

More Details

Enhancing photonic systems using topology and non-Hermiticity

Cerjan, Alexander

The broad goal of this project was to develop new analytical and numerical insights for how important photonic processes can be improved using recently discovered principles in topological and non-Hermitian physics. In particular, there are two recent discoveries that we aimed to harness to achieve this goal. First, it was discovered in condensed matter physics that crystalline symmetries can protect low-dimensional topologically protected states in lattices without the need for breaking time-reversal symmetry. These so-called ‘higher-order’ topological systems represent an important development for photonic systems, where it is very difficult to break time-reversal symmetry, and which had been previously thought necessary to realize topological phenomena. Second, the last decade has seen a significant amount of interest in phenomena which are unique to non-Hermitian systems, i.e., systems which do not conserve energy. For example, spatially patterned gain and loss can be used to realize exceptional points, which are degeneracies in a system’s spectrum where the system becomes defective, while the existence of radiative losses also enables a new route to confinement through bound states in the continuum. For such non-Hermitian phenomena, photonics again represents a critical platform, as photonic systems naturally lose light to their radiative environments, making them generally non-Hermitian, and it is also possible to incorporate additional gain or loss. Based on these broad principles, we pursued a range of projects to harness bound states in the continuum in a variety of different systems and architectures, develop real-space methods for classifying topological systems to yield better photonic design principles, and a novel Brillouin-based fiber laser for sensing strain.

More Details

Advanced Reactor Cyber Analysis and Development Environment (ARCADE) for System-Level Design Analysis

Hahn, Andrew S.; Maccarone, Lee; Rowland, Mike

Cybersecurity is a persistent concern to the safety and security of Nuclear Power Plants (NPPs), but has lacked data-driven, evidence-based research. Rigorous cybersecurity analysis is critical for the licensing of advanced reactors using a performance-based approach. One tool that enables cybersecurity analysis is modeling and simulation. The nuclear industry makes extensive use of modeling and simulation throughout the decision process but lacks a method to incorporate cybersecurity analysis with existing models. To meet this need, the Advanced Reactor Cyber Analysis and Development Environment (ARCADE) was developed. ARCADE is a suite of publicly available tools that can be used to develop emulations of industrial control system devices and networks and integrate those emulations with physics simulators. This integration of cyber emulations and physics models enables rigorous cyber-physical analysis of cyber-attacks on NPP systems. This report provides an overview of key considerations for using ARCADE with existing physics models and demonstrates ARCADE’s capabilities for cybersecurity analysis. Using a model of the Small Modular Advanced High Temperature Reactor (SmAHTR), ARCADE was able to determine the sensitivity of the primary heat exchangers (PHX) to coordinated cyber-attacks. The analysis determined that while the PHX’s failures cause disruption to the reactor, they did not cause any safety limits to be exceeded because of the plant design, including passive safety features. Further development of ARCADE will enable rigorous, repeatable, and automated cyber-physical analysis of advanced reactor control systems. These efforts will also help reduce regulatory uncertainty by presenting similar types of cybersecurity analyses in a common format, driving standard approaches and reporting.

More Details

Numerical and Visual Representations of Uncertainty Lead to Different Patterns of Decision Making

IEEE Computer Graphics and Applications

Matzen, Laura E.; Howell, Breannan C.; Trumbo, Michael C.S.; Divis, Kristin M.

Although visualizations are a useful tool for helping people to understand information, they can also have unintended effects on human cognition. This is especially true for uncertain information, which is difficult for people to understand. Prior work has found that different methods of visualizing uncertain information can produce different patterns of decision making from users. However, uncertainty can also be represented via text or numerical information, and few studies have systematically compared these types of representations to visualizations of uncertainty. We present two experiments that compared visual representations of risk (icon arrays) to numerical representations (natural frequencies) in a wildfire evacuation task. Like prior studies, we found that different types of visual cues led to different patterns of decision making. In addition, our comparison of visual and numerical representations of risk found that people were more likely to evacuate when they saw visualizations than when they saw numerical representations. These experiments reinforce the idea that design choices are not neutral: seemingly minor differences in how information is represented can have important impacts on human risk perception and decision making.

More Details

Energy justice & coastal communities: The case for Meaningful Marine Renewable Energy Development

Renewable and Sustainable Energy Reviews

Caballero, Mariah D.; Mcdonald, Yolanda J.; Gunda, Thushara

Global climate change has prompted many national plans for rapid emissions reductions. For example, the United States recently committed to transitioning to 100% carbon-free electricity by 2035 and net-zero emissions economy-wide by 2050. Parallel to conversations surrounding emissions reductions is the call for energy justice, or the demand for more equitable distribution of energy-related burdens and benefits among communities. To date, energy justice has evolved as a mostly academic conversation, which may limit its utility to praxis. In response, we offer an interdisciplinary framework that aims to organize existing knowledge and lessons learned from energy development. Specifically, we developed the Meaningful Marine Renewable Energy (MRE) Development Framework and conducted a literature review using MRE as a case study. MRE was chosen because it is a nascent renewable energy technology in the US with projects mostly in demonstration stages and no commercial deployment, making it a useful case study to apply lessons learned from other energy sectors and other countries. Discussion of current resources being developed among the MRE community and their implications for furthering energy justice priorities are also explored. We conclude the review with a compiled list of questions meant to support stakeholders in translating theoretical concepts of Meaningful MRE Development to practice. Although the Meaningful MRE framework was developed using MRE as a use case, our interdisciplinary theoretical framework can be applied beyond MRE to other sustainable and renewable energy projects.

More Details

High-fidelity low-loss state detection of alkali-metal atoms in optical tweezer traps

Physical Review A

Chow, Matthew N.H.; Little, Bethany J.; Jau, Yuan-Yu

We demonstrate the discrimination of ground-state hyperfine manifolds of a cesium atom in an optical tweezer using a simple probe beam with Formula Presented% detection fidelity and 0.9(2)% detection-driven loss of bright-state atoms. Our detection infidelity of Formula Presented% is an order of magnitude better than previously published low-loss readout results for alkali-metal atoms in optical tweezers. We achieve these results by identifying and mitigating an extra depumping mechanism due to stimulated Raman transitions induced by trap light in the presence of probe light. In this work, complex optical systems and stringent vacuum pressures are not required, enabling straightforward adoption of our techniques on contemporary experiments.

More Details

Development of a colinear Second-Harmonic Orthogonal Polarization (SHOP) interferometer for electron areal density measurements in Magnetically Insulated Transmission Lines (MITLs)

Hines, Nathan R.; Awe, Thomas J.; Schwarz, Jens; Patel, Sonal G.; Lamppa, Derek C.; Rose, David V.; Reyes, Pablo A.; Scoglietti, Daniel J.; Gilmore, Mark A.; Laity, George R.; Armstrong, Darrell J.; Bliss, David E.; Cuneo, Michael E.

Experimental measurements of low density plasmas forming in Magnetically Insulated Transmission Line (MITL) regions are desired to improve our understanding of current loss and power flow. Therefore, a new optical interferometer diagnostic was commissioned via this LDRD project. To measure the expected 1013 - 1017 cm-3 electron densities inside the 0.5 - 6 mm Anode-Cathode (A-K) gaps, a colinear SHOP interferometer diagnostic was constructed. The diagnostic was initially fielded on the University of New Mexico (UNM) Helicon-Cathode (HelCat) plasma device which provided a highly repeatable and well understood plasma source for which the colinear SHOP interferometer’s functionality could be verified and measured. Utilizing the highly repeatable plasma source and shot averaging, the interferometer was able to achieve an areal density sensitivity of 1×1014 cm-2. This work at UNM lead to a Review of Scientific Instruments (RSI) publication [20], DOI:10.1063/5.0101687. After the diagnostic’s capability was proven at UNM, the colinear SHOP interferometer was commissioned for use on the Sandia National Laboratories (SNL) Mykonos accelerator. Here, it provided the first temporal areal density measurements of plasma formation in a parallel plate MITL. The diagnostic was able to achieve a single shot (no multi-shot averaging like at UNM) areal density sensitivity of 1×1015 cm-2 along a ~ 2mm probing path length, which provided adequate capability to conduct fundamental physics research of MITL plasma formation. CHICAGO and ALEGRA simulations support the diagnostics experimental findings. More experimental and computational work will continue, likely leading to another publication(s). The smaller scale Mykonos accelerator work has also provided justification that the colinear SHOP interferometer is a capable diagnostic for measuring plasma areal densities in the inner MITL and convolute regions of larger TW-class accelerators like SNL’s Z machine.

More Details

Will Stochastic Devices Play Nice With Others in Neuromorphic Hardware?: There’s More to a Probabilistic System Than Noisy Devices

IEEE Electron Devices Magazine

Aimone, James B.; Misra, Shashank

Achieving brain-like efficiency in computing requires a co-design between the development of neural algorithms, brain-inspired circuit design, and careful consideration of how to use emerging devices. The recognition that leveraging device-level noise as a source of controlled stochasticity represents an exciting prospect of achieving brain-like capabilities in probabilistic neural algorithms, but the reality of integrating stochastic devices with deterministic devices in an already-challenging neuromorphic circuit design process is formidable. Here, we explore how the brain combines different signaling modalities into its neural circuits as well as consider the implications of more tightly integrated stochastic, analog, and digital circuits. Further, by acknowledging that a fully CMOS implementation is the appropriate baseline, we conclude that if mixing modalities is going to be successful for neuromorphic computing, it will be critical that device choices consider strengths and limitations at the overall circuit level.

More Details

Developing and applying quantifiable metrics for diagnostic and experiment design on Z

Foulk, James W.; Knapp, Patrick F.; Beckwith, Kristian; Evstatiev, Evstati G.; Fein, Jeffrey R.; Jennings, Christopher A.; Joseph, Roshan; Klein, Brandon; Maupin, Kathryn A.; Nagayama, Taisuke; Patel, Ravi; Schaeuble, Marc-Andre S.; Vasey, Gina; Ampleford, David J.

This project applies methods in Bayesian inference and modern statistical methods to quantify the value of new experimental data, in the form of new or modified diagnostic configurations and/or experiment designs. We demonstrate experiment design methods that can be used to identify the highest priority diagnostic improvements or experimental data to obtain in order to reduce uncertainties on critical inferred experimental quantities and select the best course of action to distinguish between competing physical models. Bayesian statistics and information theory provide the foundation for developing the necessary metrics, using two high impact experimental platforms on Z as exemplars to develop and illustrate the technique. We emphasize that the general methodology is extensible to new diagnostics (provided synthetic models are available), as well as additional platforms. We also discuss initial scoping of additional applications that began development in the last year of this LDRD.

More Details

Code-verification techniques for the method-of-moments implementation of the combined-field integral equation

Journal of Computational Physics

Freno, Brian A.; Matula, Neil

Code verification plays an important role in establishing the credibility of computational simulations by assessing the correctness of the implementation of the underlying numerical methods. In computational electromagnetics, the numerical solution to integral equations incurs multiple interacting sources of numerical error, as well as other challenges, which render traditional code-verification approaches ineffective. In this paper, we provide approaches to separately measure the numerical errors arising from these different error sources for the method-of-moments implementation of the combined-field integral equation. We demonstrate the effectiveness of these approaches for cases with and without coding errors.

More Details

A Reaction Mechanism for Carbon Soot in Post-Detonation Flows

Egeln Jr., Anthony A.; Houim, Ryan W.; Hewson, John C.

This report documents the generation of a mechanism to predict the inclusion of carbon soot particles in a high explosive flow. The mechanism includes gasification and oxidation reactions, formation, sublimation, radiation, and agglomeration. Each part of the mechanism is derived from properties in the literature. The influence of each part of the mechanism is explored using simple, example simulations consisting of a 12 mm diameter 2,4,6-Trinitrotoluene charge detonated in ambient air. The mechanism has not been quantitatively compared to experiments. Additional efforts will be required to tune and validate it, which will require continued advancements in experimental diagnostics and simulation techniques.

More Details

Paragenetic controls on CO2-fluid-rock interaction and weakening in a macroporous-dominated sandstone

Applied Geochemistry

Simmons, Jason D.; Wang, Sai; Luhmann, Andrew J.; Rinehart, Alex J.; Heath, Jason E.; Majumdar, Bhaskar S.

The injection and storage of anthropogenic CO2 in the subsurface is being deployed as a climate change mitigation tool; however, diagenetic-paragenetic heterogeneity in sandstone reservoirs often contributes to interval specific chemomechanical changes that affect injection and can increase leakage risk. Here, we address reservoir heterogeneities’ impact on chemomechanical changes in a macroporous-dominated lithofacies of Morrow B sandstone, a formation containing several diagenetically-distinct hydraulic facies while undergoing enhanced oil recovery (EOR) and carbon dioxide (CO2) sequestration. We performed three flow-through experiments using a CO2-charged or uncharged formation water combined with four indirect tensile strength tests per post-test sample. We then used the microstructure and paragenetic sequence to understand chemomechanical weakening with key observations as follows: dissolution of carbonates and feldspars changed porosity; increased permeability led to reclassifying each sample in a different hydraulic flow unit; decreased ultrasonic velocity; and did not lead to a loss of tensile strength. Tensile strength maintenance occurred due to the low abundance and minor dissolution of siderite, the stability of quartz, and the relative position of diagenetic ankerite within feldspar. This macroporous-dominated lithofacies is the primary reservoir for the Morrow B Sandstone, and is analogous to other porous sandstone reservoirs. It represents an end-member of a chemomechanically low-risk siliceous CO2 sequestration and CO2-EOR reservoir.

More Details

Developing a Novel Neutron Time-of-Flight Diagnostic Platform for Z: Ultrafast Pixel Array Camera System

Cantu, Precious L.; Looker, Quinn M.; Mangan, Michael A.

This report describes a Late-Start LDRD project on a compact neutron time-of-flight (nTOF) diagnostic, based on the Ultra-Fast Pixel Array Camera (UPAC) platform. By leveraging advancements in microelectronics, the UPAC nTOF is designed to address existing challenges of current nTOFs at the Z-machine that rely on large scintillators and photomultiplier tubes using bulky, discrete digitizing units hindering scalability with signal routing presenting an additional challenge. The report describes the UPAC diagnostic platform, outlines the calibration of the diagnostic and the latest results of fielding the UPAC as a ride-a-long diagnostic on the Magnetized liner inertial fusion (MagLIF) campaigns at the Z-machine supported by the Late-Start LDRD, and finally discusses conclusions and proposed future work.

More Details

Earthquake Relocation in Rock Valley, NV Using Absolute and Differential Times

Preston, Leiph

In this brief report we document algorithmic choices and updates to our code related to the earthquake relocation portion of our tomographic imaging algorithm. We show results of these improvements by relocating over 40,000 events located within 20-30 km of the Rock Valley Direct Comparison (RV/DC) site using both absolute and differential arrival times within the context of two different 3-D Earth models. Accurate hypocentral locations and Earth models are important to the ultimate goals of the RV/DC program, which will co-locate a chemical explosion with a shallow earthquake within Rock Valley, southern Nevada, to investigate differences between the source types and improve our analysis algorithms for both types (Snelson et al., 2022). Our improvements to our relocation algorithms comprise just one step toward achieving these goals

More Details

SCEPTRE 2.6 User's Guide

Pautz, Shawn D.

Sandia’s Computational Engine for Particle Transport for Radiation Effects (SCEPTRE) is a computer code that solves the linear Boltzmann transport equation, particularly targeting coupled photon-electron problems. It uses unstructured finite element meshes in space, multigroup in energy, and discrete ordinates (Sn) or other methods in angle. SCEPTRE uses an xml-based input file to specify the problem. This report documents the options and syntax of that input file.

More Details

Mitigation of nitrogen vacancy photoluminescence quenching from material integration for quantum sensing

Materials for Quantum Technology

Henshaw, Jacob D.; Kehayias, Pauli; Basso, Luca B.; Jaris, Michael; Cong, Rong; Titze, Michael; Lu, Tzu M.; Lilly, Michael; Mounce, Andrew M.

The nitrogen-vacancy (NV) color center in diamond has demonstrated great promise in a wide range of quantum sensing. Recently, there have been a series of proposals and experiments using NV centers to detect spin noise of quantum materials near the diamond surface. This is a rich complex area of study with novel nano-magnetism and electronic behavior, that the NV center would be ideal for sensing. However, due to the electronic properties of the NV itself and its host material, getting high quality NV centers within nanometers of such systems is challenging. Band bending caused by space charges formed at the metal-semiconductor interface force the NV center into its insensitive charge states. Here, we investigate optimizing this interface by depositing thin metal films and thin insulating layers on a series of NV ensembles at different depths to characterize the impact of metal films on different ensemble depths. We find an improvement of coherence and dephasing times we attribute to ionization of other paramagnetic defects. The insulating layer of alumina between the metal and diamond provide improved photoluminescence and higher sensitivity in all modes of sensing as compared to direct contact with the metal, providing as much as a factor of 2 increase in sensitivity, decrease of integration time by a factor of 4, for NV T 1 relaxometry measurements.

More Details

GHz operation of a quantum point contact using stub-impedance matching circuit

Physics Open

Shanmugam, Anusha; Kumbhakar, Prasanta; Sundaresan, Harikrishnan; Sunny, Annu A.; Reno, J.L.; Thalakulam, Madhu

Quantum point contacts (QPC) are the building blocks of quantum dot qubits and semiconducting quantum electrical metrology circuits. QPCs also make highly sensitive electrical amplifiers with the potential to operate in the quantum-limited regime. Though the inherent operational bandwidth of QPCs can eclipse the THz regime, the impedance mismatch with the external circuitry limits the operational frequency to a few kHz. Lumped-element impedance-matching circuits are successful only up to a few hundreds of MHz in frequency. QPCs are characterised by a complex impedance consisting of quantized resistance, capacitance, and inductance elements. Characterising the complex admittance at higher frequencies and understanding the coupling of QPC to other circuit elements and electromagnetic environments will provide valuable insight into its sensing and backaction properties. In this work, we couple a QPC galvanically to a superconducting stub tuner impedance matching circuit realised in a coplanar waveguide architecture to enhance the operation frequency into the GHz regime and investigate the electrical amplification and complex admittance characteristics. The device, operating at ~1.96 $GHz$ exhibits a conductance sensitivity of 2.92 X 10-5(e2/h)/$\sqrt{Hz}$ with a bandwidth of 13 $MHz$. Besides, the RF reflected power unambiguously reveals the complex admittance characteristics of the QPC, shining more light on the behaviour of quantum tunnel junctions at higher operational frequencies.

More Details

PathTrace and MPVEASI: A Path Analysis Comparative Validation Study

Miller, Janeen; Zahnle, Paul W.; Orr, Austin T.

Developed in 2018, PathTrace is a software package built with the intention of making path analysis simple and intuitive. PathTrace is a top-down pathway analysis software where a user is able to explore vulnerable pathways into a facility. The intention of utilizing a software tool like PathTrace is to characterize an existing physical protection system (PPS) and to upgrade the system to achieve a high level of response interruption, or probability of interruption (PI) of the adversary. There are four steps for conducting path analysis using PathTrace. The first step is to identify an image to use to build the model and scale the model within PathTrace using a section of known distance (wall or fence perimeter, for example). The scaling process will produce a grid of cells through which the user is able to build a model. The second step is to fill out the grid of cells with four categories of materials: Barriers, Detection Areas, Jumps, and Targets. These materials apply associated delay and detection values to the cells in which they are applied. The third step is to represent the adversary and response forces. The adversaries are represented by their capabilities in interacting with the materials identified in step two, and the response is represented by how quickly they will be able to respond to an adversary attack. Finally, the user is able to take all of the information from the previous three steps and perform a Most Vulnerable Path (MVP) analysis. In this stage, the user is able to visualize vulnerable adversary pathways and reason about how to upgrade these pathways to provide a high level of PI.

More Details

Exploring pressure-dependent inelastic deformation and failure in bonded granular composites: An energetic materials perspective

Mechanics of Materials

Long, Kevin N.; Brown, Judith A.; Clemmer, Joel T.

In polymer-filled granular composites, damage may develop in mechanical loading prior to material failure. Damage mechanisms such as microcracking or plastic deformation in the binder phase can substantially alter the material's mesostructure. For energetic materials, such as solid propellants and plastic bonded explosives, these mesostructural changes can have far reaching effects including degraded mechanical properties, potentially increased sensitivity to further insults, and changes in expected performance. Unfortunately, predicting damage is nontrivial due to the complex nature of these composites and the entangled interactions between inelastic mechanisms. In this work, we assess the current literature of experimental knowledge, focusing on the pressure-dependent shear response, and propose a simple simulation framework of bonded particles to study four limiting-case material formulations at both meso- and macro-scales. To construct the four cases, we systematically vary the relative interfacial strength between the polymer binder and granular filler phase and also vary the polymer's glass transition temperature relative to operating temperature which determines how much the binder can plastically deform. These simulations identify key trends in global mechanical response, such as the emergence of strain hardening or softening regimes with increasing pressure which qualitatively resemble experimental results. By quantifying the activation of different inelastic mechanisms, such as bonds breaking and plastically straining, we identify when each mechanism becomes relevant and provide insight into potential origins for changes in mechanical responses. The locations of broken bonds are also used to define larger, mesoscopic cracks to test various metrics of damage. We primarily focus on triaxial compression, but also test the opposite case of triaxial extension to highlight the impact of Lode angle on mechanical behavior.

More Details

Progress Report on Identification and Resolution of Gaps in Mechanistic Source Term Modeling for Molten Salt Reactors

Haskin, Troy C.; Schmidt, Rodney C.; Albright, Lucas I.; Luxat, David L.

This report summarizes FY23 activities to improve mechanistic source term modeling for MSR concepts. Relevant MELCOR capability enhancements made during FY23 are summarized including development of a flexible python-based EOS generator (MELEOS), porous domain modeling capabilities for validation applications, and development of a MELCOR model for the LSTL facility in anticipation of upcoming molten salt experiments.

More Details

Resilient Electric Grid: Defining, Measuring, and Integrating Resilience into Electricity Sector Policy and Planning

Kazimierczuk, Kamila; Demenno, Mercy B.; O'Neil, Rebecca; Pierre, Brian J.

Traditionally, electric grid planning seeks to maintain safe, reliable, efficient, and affordable service for current and future customers. As policies, expectations of the energy system, and the threat landscape evolve, additional objectives for power system planners are emerging, including decarbonization, resilience, and equity. Renewable and clean energy goals, especially in the context of deep decarbonization strategies, are changing the mix of resources on the electric grid and prompting new considerations for grid architecture. The increased frequency and severity of extreme weather events over the last two decades, coupled with cybersecurity concerns, have elevated resilience as a key system need. More recently, there has been greater focus on equity and energy justice in grid planning to ensure that disadvantaged communities are not adversely affected by grid modernization and have equal access to its benefits. In response, new thinking around multi-objective decision planning is exploring improvements in grid planning processes to better integrate approaches to meet decarbonization, resilience, and equity objectives. To provide a foundation for this work, a series of white papers was produced to summarize these emerging objectives.

More Details

An Appraisal of the Performance and Characteristics of Summary Rays Calculated for the SALSA3D Traveltime Dataset

Hariharan, Anant; Porritt, Robert W.; Conley, Andrea C.

The SALSA3D tomographic model provides a crucial community resource for improving the quality (in terms of both accuracy and precision) of predictions of the traveltimes of seismic waves and therefore improving our ability to locate anthropogenic or natural seismic events. Constructing the requisite tomographic model requires addressing the challenges implied by a massive and growing dataset of traveltime measurements. This study explores one approach to tackle this challenge: the use of summary rays, which average traveltime measurements from sources within evenly spaced cells, thereby eliminating redundant data.

More Details

Chemical controls on the propagation and healing of subcritical fractures

Ilgen, Anastasia G.; Buche, Michael R.; Choens II, Robert C.; Dahmen, Karin A.; Delrio, F.W.; Gruenwald, Michael; Grutzik, S.J.; Harvey, Jacob A.; Mook, William M.; Newell, Pania; Wilson, Jennifer E.; Rimsza, Jessica; Sickle, Jordan; Wang, Qiaoyi; Warner, Derek H.

Human activities involving subsurface reservoirs—resource extraction, carbon and nuclear waste storage—alter thermal, mechanical, and chemical steady-state conditions in these systems. Because these systems exist at lithostatic pressures, even minor chemical changes can cause chemically assisted deformation. Therefore, understanding how chemical effects control geomechanical properties is critical to optimizing engineering activities. The grand challenge in predicting the effect of chemical processes on mechanical properties lays in the fact that these phenomena take place at molecular scales, while they manifest all the way to reservoir scales. To address this fundamental challenge, we investigated chemical effects on deformation in model and real systems spanning molecular- to centimeter scales. We used theory, experiment, molecular dynamics simulation, and statistical analysis to (1) identify the effect of simple reactions, such as hydrolysis, on molecular structures in interfacial regions of stressed geomaterials; (2) quantify chemical effects on the bulk mechanical properties, fracture and displacement for granular rocks and single crystals; (3) develop initial understanding of universal scaling for individual displacement events in layered geomaterials; and (4) develop analytic approximations for the single-chain mechanical response utilizing asymptotically correct statistical thermodynamic theory. Taken together, these findings advance the challenging field of chemo-mechanics.

More Details

Universal behavior in fragmenting brittle, isotropic solids across material properties

Physical Review E

Clemmer, Joel T.; Robbins, Mark O.

A bonded particle model is used to explore how variations in the material properties of brittle, isotropic solids affect critical behavior in fragmentation. To control material properties, a model is proposed which includes breakable two- and three-body particle interactions to calibrate elastic moduli and mode I and mode II fracture toughnesses. In the quasistatic limit, fragmentation leads to a power-law distribution of grain sizes which is truncated at a maximum grain mass that grows as a nontrivial power of system size. In the high-rate limit, truncation occurs at a mass that decreases as a power of increasing rate. A scaling description is used to characterize this behavior by collapsing the mean-square grain mass across rates and system sizes. Consistent scaling persists across all material properties studied, although there are differences in the evolution of grain size distributions with strain as the initial number of grains at fracture and their subsequent rate of production depend on Poisson's ratio. This evolving granular structure is found to induce a unique rheology where the ratio of the shear stress to pressure, an internal friction coefficient, decays approximately as the logarithm of increasing strain rate. The stress ratio also decreases at all rates with increasing strain as fragmentation progresses and depends on elastic properties of the solid.

More Details

Quantum tracking control of the orientation of symmetric-top molecules

Physical Review A

Magann, Alicia B.; San Ho, Tak; Arenz, Christian; Rabitz, Herschel A.

The goal of quantum tracking control is to identify shaped fields to steer observable expectation values along designated time-dependent tracks. The fields are determined via an iteration-free procedure, which is based on inverting the underlying dynamical equations governing the controlled observables. In this paper, we generalize the ideas in [Phys. Rev. A 98, 043429 (2018)2469-992610.1103/PhysRevA.98.043429] to the task of orienting symmetric top molecules in three dimensions. To this end, we derive equations for the control fields capable of directly tracking the expected value of the three-dimensional dipole orientation vector along a desired path in time. We show this framework can be utilized for tracking the orientation of linear molecules as well, and present numerical illustrations of these principles for symmetric-top tracking control problems.

More Details

A Bootstrap Approach to Quantifying Reliabilities and Uncertainties of Complex Systems

Crowder, Stephen V.

While much work has been done in analyzing margins and uncertainties at the component level, a gap exists in NNSA methodology relating component level reliabilities and uncertainties to system level reliability and uncertainty. This paper shows how component level reliability data can be combined via a bootstrap analysis to estimate system level reliabilities and uncertainties. The performance of the bootstrap for this problem is validated through simulation studies. This paper extends the original work of Crowder by including sensitivity analyses related to changes in samples sizes and component failure probabilities. The use of the bootstrap as a decision-making tool is thus developed by quantifying the effect of such changes on system reliability.

More Details

Photon Doppler Velocimetry to Spatially Resolve Plasma Density in a Power Flow Gap

Banasek, Jacob T.; Reyes, Pablo A.; Foulk, James W.

The understanding of power flow plasmas is important as we look towards next generation pulsed power (NGPP) as current losses could prohibit the goals of that facility. Therefore, it is important to have accurate diagnostics of the plasma parameters on the current machines, which can be used to help inform and improve simulations. Having these plasma parameters will help validate models and simulations to provide confidence when they are expanded to conditions relevant to NGPP. One important plasma parameter that can be measured is the electron density, which can be measured by photonic Doppler velocimetry (PDV). A PDV system has several key advantages over other interferometers by measuring relatively low densities (> 1 × 1015 cm-2) with both spatial and temporal resolution. Experiments were performed on the Mykonos pulsed power machine, which is a 1 MA sub scale machine in which recent platforms have been developed to explore current densities relevant to the inner magnetically insulated transmission line (MITL) on the Z machine. Experiments were performed on two different platforms, the thin foil platform and the Mykonos parallel plate platform (MP3). In addition, a combination of both single-point and multi-point measurements were used. The single-point measurements proved to be very promising, providing a clear increase in density at about 70 ns into the current rise on thin foil experiments up to about 5 × 1017 cm-3 before the probe stopped providing signal. While we did also see returns from multi-point measurements on both platforms, the signals were not as easy to interpret due to strong background effects. However, they do show initial promise for this diagnostic to measure density at several points across a 1 mm gap. These measurements provide insights in how to improve the diagnostic so that it can provide useful information on power flow relevant experiments.

More Details

Impact of heating and cooling loads on battery energy storage system sizing in extreme cold climates

Energy

Olis, Walker P.; Nguyen, Tu A.; Rosewater, David; Byrne, Raymond H.

Efficient operation of battery energy storage systems requires that battery temperature remains within a specific range. Current techno-economic models neglect the parasitic loads heating and cooling operations have on these devices, assuming they operate at constant temperature. In this work, these effects are investigated considering the optimal sizing of battery energy storage systems when deployed in cold environments. A peak shaving application is presented as a linear programming problem which is then formulated in the PYOMO optimization programming language. The building energy simulation software EnergyPlus is used to model the heating, ventilation, and air conditioning load of the battery energy storage system enclosure. Case studies are conducted for eight locations in the United States considering a nickel manganese cobalt oxide lithium ion battery type and whether the power conversion system is inside or outside the enclosure. The results show an increase of 42% to 300% in energy capacity size, 43% to 217% in power rating, and 43% to 296% increase in capital cost dependent on location. This analysis shows that the heating, ventilation, and air conditioning load can have a large impact on the optimal sizes and cost of a battery energy storage system and merit consideration in techno-economic studies.

More Details

Cryogenic Control Circuitry for Superconducting Qubits

Lewis, Rupert M.; Del Skinner Ramos, Suelicarmen; Harris, Charles T.; Bretz-Sullivan, Terence M.

Superconducting qubits have reached the point where system designers are worried about the heat that control wiring brings into the cryostat. To continue scaling cryogenic quantum systems, control solutions that work inside the cold space must be explored. One possibility is to use control electronics that is native to superconductivity, so called single-flux-quantum (SFQ) circuitry, to form an interface between qubits and whatever other electronics is needed to control eventual quantum systems. To begin exploring the utility of SFQ as control circuitry, we performed modeling and experiments on qubit readout using ballistic fluxons which are SFQ in the limit of ballistic fluxon transport. Our modeling results show that a flavor of qubit, the fluxonium, can be read out using ballistic fluxons. We designed test samples to prove some of the key concepts needed for such a readout but were ultimately unable to getting a working demonstration. The lack of testing success was due to challenges in fabrication and running short of time to perform testing rather than a fundamental problem with our analysis.

More Details

Evaluation of Potential DAS Array Geometries for the Source Physics Experiment, Phase III

Luckie, Thomas W.; Porritt, Robert W.

Distributed Acoustic Sensing (DAS) is a rapidly developing technology that can record acoustic wavefields at high sampling rates and with dense spatial spacing difficult to achieve with seismometers. However, the geophysical community has not fully explored DAS survey parameters to characterize the ideal array design. A better quantitative understanding of DAS array behavior prior to SPE Phase III acquisition can help improve the quality of the data recorded by guiding the DAS array design. Here we use array response functions as well as beamforming and backprojection results from forward modelling calculations to assess the performance of varying DAS array geometries to record regional and local sources. A seven-sided polygon DAS array demonstrated improved capabilities for recording regional sources over segmented linear arrays, with potential improvements in recording and locating local sources. These results help reveal DAS array performance as a function of geometry.

More Details

Decarbonized Electric Grid: Defining, Measuring, and Integrating Decarbonization into Electricity Sector Policy and Planning

Kazimierczuk, Kamila; Demenno, Mercy B.; O'Neil, Rebecca; Pierre, Brian J.

Traditionally, electric grid planning seeks to maintain safe, reliable, efficient, and affordable service for current and future customers. As policies, expectations of the energy system, and the threat landscape evolve, additional objectives for power system planners are emerging, including decarbonization, resilience, and equity. Renewable and clean energy goals, especially in the context of deep decarbonization strategies, are changing the mix of resources on the electric grid and prompting new considerations for grid architecture. The increased frequency and severity of extreme weather events over the last two decades, coupled with cybersecurity concerns, have elevated resilience as a key system need. More recently, there has been greater focus on equity and energy justice in grid planning to ensure that disadvantaged communities are not adversely affected by grid modernization and have equal access to its benefits. In response, new thinking around multi-objective decision planning is exploring improvements in grid planning processes to better integrate approaches to meet decarbonization, resilience, and equity objectives. To provide a foundation for this work, a series of white papers was produced to summarize these emerging objectives.

More Details

Identifying and Explaining Anomalous Activity in Surveillance Video with Compression Algorithms

Smith, Michael R.; Bisila, Jonathan; Gooding, Renee; Ting, Christina

The primary purpose of this document is to outline the progress made on the LDRD titled “Identifying and Explaining Anomalous Activity in Surveillance Video with Compression Algorithms” in FY22 and FY23. In this LDRD, we explored the usage of compression-based analytics to identify anomalous activity in video. We developed a novel algorithm, Spatio-Temporal N-Gram PPM (STNG PPM) that accounts for spatially and temporally aware anomalies in video. We extracted features using motions vectors from video as well as operating on the raw features. STNG PPM is comparable to many deep learning approaches but does not require specialized hardware (GPUs) to run efficiently. We also examine the evaluation metrics and propose novel measures addressing faults in the current evaluation measures.

More Details

The Cryosphere/Ocean Distributed Acoustic Sensing (CODAS) Experiment

Baker, Michael G.; Abbott, Robert; Rourke, William T.'.

Distributed acoustic sensing (DAS) has a demonstrated potential for wide-scale and continuous in situ monitoring of near-surface environmental and anthropogenic processes. DAS is attractive for development as a multi-geophysical observatory due to the prevalence of existing fiber infrastructure in regions with environmental, cultural, or strategic significance. To evaluate the efficacy of this technology for monitoring of polar environmental processes, we collected DAS data from a 37-km long section of seafloor telecommunications fiber located on the continental shelf of the Beaufort Sea, Alaska. This experiment spanned eight, one-week, seasonally-distributed periods across two years. This was the first ever deployment of seafloor DAS beneath sea ice, and the first deployment in any marine environment to span multiple seasons. We recorded a variety of environmental and anthropogenic signals with demonstrable utility for the study of sea ice dynamics and tracking of ocean vessels and ice-traversing vehicles.

More Details

Evidence of non-Maxwellian ion velocity distributions in spherical shock-driven implosions

Physical Review E

Mannion, Owen M.; Taitano, W.T.; Appelbe, B.D.; Crilly, A.J.; Forrest, C.J.; Glebov, V.Y.; Knauer, J.P.; Mckenty, P.W.; Mohamed, Z.L.; Stoeckl, C.; Keenan, B.D.; Chittenden, J.P.; Adrian, P.; Kabadi, N.; Frenje, J.; Gatu Johnson, M.; Regan, S.P.

The ion velocity distribution functions of thermonuclear plasmas generated by spherical laser direct drive implosions are studied using deuterium-tritium (DT) and deuterium-deuterium (DD) fusion neutron energy spectrum measurements. A hydrodynamic Maxwellian plasma model accurately describes measurements made from lower temperature (<10 keV), hydrodynamiclike plasmas, but is insufficient to describe measurements made from higher temperature more kineticlike plasmas. The high temperature measurements are more consistent with Vlasov-Fokker-Planck (VFP) simulation results which predict the presence of a bimodal plasma ion velocity distribution near peak neutron production. These measurements provide direct experimental evidence of non-Maxwellian ion velocity distributions in spherical shock driven implosions and provide useful data for benchmarking kinetic VFP simulations.

More Details

An asynchronous parallel high-throughput model calibration framework for crystal plasticity finite element constitutive models

Computational Mechanics

Foulk, James W.; Lim, Hojun

Crystal plasticity finite element model (CPFEM) is a powerful numerical simulation in the integrated computational materials engineering toolboxes that relates microstructures to homogenized materials properties and establishes the structure–property linkages in computational materials science. However, to establish the predictive capability, one needs to calibrate the underlying constitutive model, verify the solution and validate the model prediction against experimental data. Bayesian optimization (BO) has stood out as a gradient-free efficient global optimization algorithm that is capable of calibrating constitutive models for CPFEM. In this paper, we apply a recently developed asynchronous parallel constrained BO algorithm to calibrate phenomenological constitutive models for stainless steel 304 L, Tantalum, and Cantor high-entropy alloy.

More Details

Generating Skeletal Chemical Reaction Mechanisms for Post-Detonation Flows

Egeln Jr., Anthony A.; Houim, Ryan W.; Hewson, John C.

This report documents the generation of a skeletal chemical reaction mechanism for use with hemispherical pentaerythritol tetranitrate charges. Skeletal mechanisms can substantially reduce computation time while maintaining accuracy. The methodology within uses faster running sample simulations to build a representative thermodynamic state space. These thermodynamic states are used with a constant-volume reactor analysis and a reaction flow analysis to remove unimportant species and reactions from a full chemical reaction mechanism. For the given test case, this results in a 6x speedup in computation time for directly comparable simulations in 2D axisymmetric simulations. We see a 30x speedup in simulations in 3D Cartesian coordainates when compared to a prior full kinetics simulation. There is strong agreement between temperature and species mass fraction profiles between the full and skeletal chemical reaction mechanisms. These methodologies can be applied to any explosive, given the availability of sample simulations.

More Details

Improving and Assessing the Quality of Uncertainty Quantification in Deep Learning

Adams, Jason R.; Baiyasi, Rashad; Berman, Brandon; Darling, Michael C.; Ganter, Tyler; Michalenko, Joshua J.; Patel, Lekha; Ries, Daniel; Liang, Feng; Qian, Christopher; Roy, Krishna

Deep learning (DL) models have enjoyed increased attention in recent years because of their powerful predictive capabilities. While many successes have been achieved, standard deep learning methods suffer from a lack of uncertainty quantification (UQ). While the development of methods for producing UQ from DL models is an active area of current research, little attention has been given to the quality of the UQ produced by such methods. In order to deploy DL models to high-consequence applications, high-quality UQ is necessary. This report details the research and development conducted as part of a Laboratory Directed Research and Development (LDRD) project at Sandia National Laboratories. The focus of this project is to develop a framework of methods and metrics for the principled assessment of UQ quality in DL models. This report presents an overview of UQ quality assessment in traditional statistical modeling and describes why this approach is difficult to apply in DL contexts. An assessment on relatively simple simulated data is presented to demonstrate that UQ quality can differ greatly between DL models trained on the same data. A method for simulating image data that can then be used for UQ quality assessment is described. A general method for simulating realistic data for the purpose of assessing a model’s UQ quality is also presented. A Bayesian uncertainty framework for understanding uncertainty and existing metrics is described. Research that came out of collaborations with two university partners are discussed along with a software toolkit that is currently being developed to implement the UQ quality assessment framework as well as serve as a general guide to incorporating UQ into DL applications.

More Details

Distribution System Model Calibration for GMLC 3.3.3 "Incipient Failure Identification for Common Grid Asset Classes" - Project Summary

Blakely, Logan; Reno, Matthew J.

Distribution system model calibration is a key enabling task for incipient failure identification within the distribution system. This report summarizes the work and publications by Sandia National Laboratories on the GMLC project titled “Incipient Failure Identification for Common Grid Asset Classes”. This project was a joint effort between Sandia National Laboratories, Lawrence Livermore National Laboratory, National Energy Technology Laboratory, and Oak Ridge National Laboratory. The included work covers distribution system topology identification, transformer groupings, phase identification, regulator and tap position estimation, and the open-source release and implementation of the developed algorithms.

More Details

Automated Credibility Assessments of User Features in Scientific Software

Mosby, Matthew D.; Healy, Jacob N.; Nguyen, Tony

Scientific software (SciSoft) is complex, often containing a mixture of production capabilities co-mingled with features under active research and development. Furthermore, SciSoft is often developed over decades by non-computer scientists who may not have a strong background in or prioritize software architecture design, testing, and quality (e.g., test coverage). These conditions lead to difficulty in understanding which software components or functions implement what user-facing features and therefore those features’ software quality pedigree. This lack of understanding poses challenges in assessing readiness and credibility of user features, and often relies on a SciSoft subject matter expert’s (SME) laborious investigation and assertion. This final report of a one-year Computing and Information Sciences Lab Directed Research and Development project presents a general framework for modeling SciSoft architecture as a direct relationship between user features and the software components/functions that implement them. Our approach leverages automated labeling of the SciSoft’s regression test suite and employs machine learning algorithms to construct the architecture model. We demonstrate this framework on the Solid Mechanics component of the SIERRA multi-physics engineering analysis suite developed at Sandia National Laboratories.

More Details

Exploitation of Defects in High Entropy Ceramic Barrier Materials

Harvey, Jacob A.; Lowry, Daniel R.; Riley, Christopher R.; Mccoy, Chad A.; Ulmen, Ben; Biedermann, Laura B.; Bishop, Sean R.; Gallis, Dorina F.S.

A critical mission need exists to develop new materials that can withstand extreme environments and multiple sequential threats. High entropy materials, those containing 5 or more metals, exhibit many exciting properties which would potentially be useful in such situations. However, a particularly hard challenge in developing new high entropy materials is determining a priori which compositions will form the desired single phase material. The project outlined here combined several modeling and experimental techniques to explore several structure-property-relationships of high entropy ceramics in an effort to better understand the connection between their compositional components, their observed properties, and stability. We have developed novel machine learning algorithms which rapidly predict stable high entropy ceramic compositions, identified the stability interplay between configurational entropy and cation defects, and tested the mechanical stability of high entropy oxides using the unique capabilities at the Dynamic Compression Sector facility and the Saturn accelerator.

More Details

Investigation of SF6 Alternatives in Spark Gap Switches for GWP Reduction

Steiner, Adam M.; Burnette, Matthew L.; Flynn, Max; Felix, Joseph; Hopkins, Matthew M.; Lietz, Amanda M.; Stephens, Jacob C.; Mitchell, Marc D.

This primary purpose of this project was to evaluate alternative gas mixtures to sulfur hexafluoride (SF6) developed for high voltage power delivery applications for use in high voltage spark gap switches. These SF6 alternatives lower global warming potential emissions and enable improvements to the pressure-voltage design space. A combined experimental, computational, and theoretical study was used to quantify the impact of persistent breakdown products on the breakdown distribution of SF6-replacement gas mixtures. Viable SF6 replacements suitable for use in spark gap switches were studied to enable performance and agility improvements for next-generation pulsed power research relevant to national security missions. Experimental campaign included establishing parameters of switch gases as function of concentration. Various concentrations and pressures were tested for trends in breakdown voltage, repeatability, and durability, and breakdown constituents. A zero-dimensional plasma global model was used to simulate the plasma arc decay and recombination process in spark-gap switches relevant to the Z machine. Finally, a complete and consistent set of electron-neutral collision cross-sections for the novel insulating gas C4F7N is reported.

More Details

Fractional Modeling in Action: a Survey of Nonlocal Models for Subsurface Transport, Turbulent Flows, and Anomalous Materials

Journal of Peridynamics and Nonlocal Modeling

D'Elia, Marta; Gulian, Mamikon; Suzuki, Jorge L.; Zayernouri, Mohsen

Modeling of phenomena such as anomalous transport via fractional-order differential equations has been established as an effective alternative to partial differential equations, due to the inherent ability to describe large-scale behavior with greater efficiency than fully resolved classical models. In this review article, we first provide a broad overview of fractional-order derivatives with a clear emphasis on the stochastic processes that underlie their use. We then survey three exemplary application areas — subsurface transport, turbulence, and anomalous materials — in which fractional-order differential equations provide accurate and predictive models. For each area, we report on the evidence of anomalous behavior that justifies the use of fractional-order models, and survey both foundational models as well as more expressive state-of-the-art models. We also propose avenues for future research, including more advanced and physically sound models, as well as tools for calibration and discovery of fractional-order models.

More Details

Dislocation line tension model to improve understanding of the effects of hydrogen on the deformation of structural materials

Leon-Cazares, Fernando D.; Zhou, Xiaowang; Alleman, Coleman; Ronevich, Joseph; San Marchi, Chris

Decarbonization efforts highlight hydrogen as an attractive alternative to fossil fuels, but its tendency to embrittle structural metals demands careful consideration when designing hydrogen infrastructure. Moreover, the mechanisms by which hydrogen degrades these materials are still being elucidated. The current work develops new computational tools to quantify the different contributions of hydrogen to the energy barrier of cross-slip, a key deformation mechanism. Novel features are implemented to a line tension model, which include the use of non-singular dislocation interactions, character-dependent dislocation energies and simulations of the constriction configurations. A new molecular dynamics technique is developed to calculate the interaction energy between the partials of a dissociated dislocation via fixing the centers of mass of the regions below and above the Shockley partials and performing time-averaged calculations. Hydrogen is found to impact the stacking fault width of dislocations in different ways depending on their characters: it decreases for dislocations with a character θ > 30°, remains unchanged for θ = 30° and increases for θ < 30°. The latter regime is a newly identified mechanism by which hydrogen inhibits cross-slip. Moreover, formation of nano-hydrides is predicted to occur around screw dislocations for high hydrogen concentrations, a phenomenon previously identified only in dislocations with an edge component. If nano-hydrides develop, their influence extending the equilibrium stacking fault width and increasing both the constriction and cross-slip energy barriers dominate over all other hydrogen contributions. The theory and tools developed will pave the way towards a comprehensive understanding of hydrogen-dislocation interactions in structural metals.

More Details

M+(M=Ca, Ba) Cations Bound to Molecular Cavities: A New Strategy for Incorporating Molecular Quantum States into Quantum Information

Zwier, Timothy S.

This project pursued a novel strategy for incorporating multiple qubits per ion into ion-trap based quantum computing (ITQC) involving Ca+ and Ba+. By forming molecular complexes of these cations with molecular-scale cages, we hypothesized that molecular energy levels could be incorporated into quantum computing while retaining key properties of the atomic ions intact. We experimented with a variety of molecular cages and found that Na+, K+, Rb+, Ca2+, Sr2+, and Ba2+ could be captured and brought into the gas phase efficiently by imbedding them inside [2.2.2]-benzocryptand. IR and UV spectra of these cage complexes are sensitive to the size and charge state of the ion, reporting on the structures and binding properties of the cage complexes. UV photofragmentation of the Ba2+-Acetate-1-BzCrypt complex produces Ba+-BzCrypt, the complex targeted for exploration in the original hypothesis. Follow-on funding is needed to pursue the spectroscopy of this complex as a target for ITQC.

More Details

Exploring the High-Pressure Phases of Carbon through X-ray Diffraction of Dynamic Compression Experiments on Sandia’s Z Pulsed Power Facility

Minerals

Ao, Tommy; Foulk, James W.; Blada, Caroline B.; Brown, Nathan P.; Fulford, Karin W.; Gard, Paul D.; Geissel, Matthias; Hanshaw, Heath L.; Montoya, Michael M.; Payne, Sheri; Scoglietti, Edward; Smith, Anthony S.; Speas, Christopher S.; Porter, John L.; Seagle, Christopher T.

The carbon phase diagram is rich with polymorphs which possess very different physical and optical properties ideal for different scientific and engineering applications. An understanding of the dynamically driven phase transitions in carbon is particularly important for applications in inertial confinement fusion, as well as planetary and meteorite impact histories. Experiments on the Z Pulsed Power Facility at Sandia National Laboratories generate dynamically compressed high-pressure states of matter with exceptional uniformity, duration, and size that are ideal for investigations of fundamental material properties. X-ray diffraction (XRD) is an important material physics measurement because it enables direct observation of the strain and compression of the crystal lattice, and it enables the detection and identification of phase transitions. Several unique challenges of dynamic compression experiments on Z prevent using XRD systems typically utilized at other dynamic compression facilities, so novel XRD diagnostics have been designed and implemented. We performed experiments on Z to shock compress carbon (pyrolytic graphite) samples to pressures of 150–320 GPa. The Z-Beamlet Laser generated Mn-Heα (6.2 keV) X-rays to probe the shock-compressed carbon sample, and the new XRD diagnostics measured changes in the diffraction pattern as the carbon transformed into its high-pressure phases. Quantitative analysis of the dynamic XRD patterns in combination with continuum velocimetry information constrained the stability fields and melting of high-pressure carbon polymorphs.

More Details

The wave energy converter control competition (WECCCOMP): Wave energy control algorithms compared in both simulation and tank testing

Applied Ocean Research

Ringwood, John V.; Tom, Nathan; Ferri, Francesco; Yu, Yi H.; Coe, Ryan G.; Ruehl, Kelley M.; Bacelli, Giorgio; Shi, Shuo; Patton, Ron J.; Tona, Paolino; Sabiron, Guillaume; Merigaud, Alexis; Ling, Bradley A.; Faedo, Nicolas

The wave energy control competition established a benchmark problem which was offered as an open challenge to the wave energy system control community. The competition had two stages: In the first stage, competitors used a standard wave energy simulation platform (WEC-Sim) to evaluate their controllers while, in the second stage, competitors were invited to test their controllers in a real-time implementation on a prototype system in a wave tank. The performance function used was based on converted energy across a range of standard sea states, but also included aspects related to economic performance, such as peak/average power, peak force, etc. This paper compares simulated and experimental results and, in particular, examines if the results obtained in a linear system simulation are borne out in reality. Overall, within the scope of the device tested, the range of sea states employed, and the performance metric used, the conclusion is that high-performance WEC controllers work well in practice, with good carry-over from simulation to experimentation. However, the availability of a good WEC mathematical model is deemed to be crucial.

More Details

GRIDS-Net: Inverse shape design and identification of scatterers via geometric regularization and physics-embedded deep learning

Computer Methods in Applied Mechanics and Engineering

Nair, Siddharth; Walsh, Timothy; Pickrell, Gregory W.; Semperlotti, Fabio

This study presents a deep learning based methodology for both remote sensing and design of acoustic scatterers. The ability to determine the shape of a scatterer, either in the context of material design or sensing, plays a critical role in many practical engineering problems. This class of inverse problems is extremely challenging due to their high-dimensional, nonlinear, and ill-posed nature. To overcome these technical hurdles, we introduce a geometric regularization approach for deep neural networks (DNN) based on non-uniform rational B-splines (NURBS) and capable of predicting complex 2D scatterer geometries in a parsimonious dimensional representation. Then, this geometric regularization is combined with physics-embedded learning and integrated within a robust convolutional autoencoder (CAE) architecture to accurately predict the shape of 2D scatterers in the context of identification and inverse design problems. An extensive numerical study is presented in order to showcase the remarkable ability of this approach to handle complex scatterer geometries while generating physically-consistent acoustic fields. The study also assesses and contrasts the role played by the (weakly) embedded physics in the convergence of the DNN predictions to a physically consistent inverse design.

More Details

Joint Geophysical and Numerical Insights of the Coupled Thermal-Hydro-Mechanical Processes During Heating in Salt

Journal of Geophysical Research: Solid Earth

Wang, Jiannan; Uhlemann, Sebastian; Otto, Shawn; Dozier, Brian; Kuhlman, Kristopher L.; Wu, Yuxin

Salt offers an optimal medium for the permanent isolation of heat-producing radioactive waste due to its impermeability, high thermal conductivity, and ability to close fractures through creep. A thorough understanding of the thermal-hydrological-mechanical (THM) processes, encompassing brine migration, is fundamental for secure radioactive waste disposal within salt formations. At the Waste Isolation Pilot Plant (WIPP), we conducted joint in situ geophysical monitoring experiments during active heating to investigate brine migration near excavations. This experiment incorporated electrical resistivity tomography (ERT) alongside high-resolution fiber-optic-based distributed temperature sensing within a controlled heating experiment. Additionally, discrete element model (DEM) based numerical simulations were conducted to simulate THM processes during heating, providing a more mechanistic understanding of the coupled processes leading to the observed changes in geophysical measurements. During heating, resistivity shifts near the heater were reasonably explained by temperature effects. However, in more distant, cooler regions, the resistivity decrease exceeded predictions based solely on temperature. DEM simulations highlighted brine migration, propelled by pore pressure gradients, as the likely primary factor contributing to the additional resistivity decline beyond temperature effects. The comparison between the predicted ERT responses and observations was much improved when considering the effects of brine migration based on the DEM simulations. These geophysical and simulation findings shed light on brine migration in response to salt heating, enhancing our understanding of the coupled THM processes in salt for safe radioactive waste disposal.

More Details

Experimental and computational study of polystyrene sulfonate breakdown by a Fenton reaction

Polymer Degradation and Stability

Kent, Michael S.; Landera, Alexander; Martinez, Daniella V.; Salinas, Jay; Rodriguez, Alberto; Martinez, Estevan J.; Davydovich, Oleg

Experimental studies and ab initio quantum chemistry calculations were combined to investigate the process by which a Fenton reaction breaks down polystyrene sulfonate. The experimental results show that both molecular weight reduction and loss of aromaticity occur nearly simultaneously, a finding that is supported by the calculations. The results show that more than half of the material is broken down to low molecular weight compounds (< 500 g/mol) with two molar equivalents of H2O2 per styrene monomer. The calculations provide insights into the reaction pathways and indicate that at least two hydroxyl radicals are required to cleave backbone C–C bonds or to eliminate aromaticity. The calculations also show that, of the aromatic carbons, hydroxyl radical is most likely to add to the carbon bonded to sulfur. This finding explains the loss of hydrogen sulfite anion early in the process and also the efficient reduction of Fe(III) to Fe(II) through semiquinone formation. Taken together the experimental and computational results indicate that the reaction is very efficient and that very little H2O2 is lost to unproductive reactions. This high efficiency is attributed to the close association of Fe atoms with the sulfonate group such that hydroxyl radicals are generated near the polymer chains.

More Details

Quantifying model prediction sensitivity to model-form uncertainty

Portone, Teresa; White, Rebekah D.; Rosso, Haley; Bandy, Rileigh J.; Hart, Joseph L.

Computational and mathematical models are essential to understanding complex systems and phenomena. However, when developing such models, limited knowledge and/or resources necessitates the use of simplifying assumptions. It is therefore crucial to quantify the impact of such simplifying assumptions on the reliability and accuracy of resulting model predictions. This work develops a first-of-its-kind approach to quantify the impact of physics modeling assumptions on predictions. Here, we leverage the emerging field of model-form uncertainty (MFU) representations, which are parameterized modifications to modeling assumptions, in combination with grouped Sobol’ indices to quantitatively measure an assumption’s importance. Specifically, we compute the grouped Sobol’ index for the MFU representation’s parameters as a single importance measure of the assumption for which the MFU representation characterizes uncertainty. To ensure this approach is robust to the subjective choice of how to parameterize a MFU representation, we establish bounds for the difference between sensitivity results for two different MFU representations based on differences in model prediction statistics. The capabilities associated with this approach are demonstrated on three exemplar problems: an upscaled subsurface contaminant transport problem, ablation modeling for hypersonic flight, and nuclear waste repository modeling. We found that our grouped approach is able to assess the impact of modeling assumptions on predictions and offers computational advantages over classical Sobol’ index computation while providing more interpretable results.

More Details

Extending Parsimonious Bayesian Inference

Duersch, Jed A.

Parsimonious Bayesian inference is a theoretical framework for efficient data assimilation that seeks to balance increased consistency between predictions and training data against corresponding increases in model complexity. Within this framework, over-training is understood as optimization that encodes excessive information within model parameters while only achieving small improvements between predictions and training data. This project aims to develop practical methods of limiting excess model information during optimization. One key observation is that practical heuristics for parsimonious learning in high-dimensions must balance expressivity, i.e. the ability of the model to capture diverse predictions with only a few non-zero parameters, against discoverability, i.e. the ability to train the model with gradient-based optimization and drive parameters to low information states. As such, we developed logical activation functions that are able to adaptively approximate arbitrary truth tables that define Boolean logic operations within a probabilistic framework. These functions have demonstrated the ability to learn exclusive disjunction (XOR) and conditioned disjunction (if [condition] then [result_if_true] else [result_if_false]) within a single layer of a neural network. To efficiently exploit these activation functions to drive parsimonious learning required several other advances within the domain of variational inference. The most efficient form of complexity suppression is structured sparsification, driving most model parameters to zero while achieving the structural coherence among nonzeros needed for bandwidth reduction. Such models are not only far more efficient at suppressing information-theoretic complexity, they also reduce the other forms of complexity (computations, communication, storage, and the number of dependencies needed to evaluate predictions). Aiming to support enhanced sparsification, this project examined new approaches to high-dimensional variational inference that allow us to calibrate and control parameter uncertainty during optimization. By identifying which parameters can sustain sparsifying perturbations with little impact on prediction quality, we can develop better pruning strategies by framing them as approximate Bayesian inference. These advances also open paths to mitigate concerns with deploying advanced learning methods in resource-constrained environments, such as running models on power-limited or communication-limited devices.

More Details

Lightning radiometry in visible and infrared bands

Atmospheric Research

Wemhoner, Jacob; Wermer, Lydia R.; Da Silva, Caitano L.; Barnett, Patrick; Radosevich, Cameron; Patel, Sonal G.; Edens, Harald

Calibrated measurements of lightning optical emissions are critical for both quantifying the impacts of lightning in our atmosphere and devising detection instruments with sufficient dynamic range capable of yielding close to 100% detection efficiency. However, to date, there is only a limited number of investigations that have attempted to take such calibrated measurements. In this work, we report the power radiated by lightning in both visible and infrared bands, assuming isotropic emission, and accounting for atmospheric absorption. More precisely, we report peak radiated power and total radiated energy in the combined visible plus near-infrared range (VNIR, 0.34–1.1 μm), around the Hα line (652–667 nm), and for the 2–2.5 μm infrared band. The estimated peak power and total energy radiated by negative cloud-to-ground return strokes in the VNIR range is 130 MW and 20 kJ, respectively. Additionally, we detected peak radiated powers of 12 and 0.19 MW in the Hα and infrared bands, respectively. We cross-reference the optical data set with peak current reported by a lightning detection network. The resulting trend is that optical power emitted around the Hα line scales with peak return stroke current according to a power law with exponent equal to 1.25. This trend, which should be approximately true across the entire visible spectrum, can be attributed to the plasma negative differential resistance of the lightning return stroke channel. We conclude by discussing the challenges in performing calibrated measurements of lightning optical power in different bands and comparing the results with previously-collected data with different experimental setups, observation conditions, and calibration methods.

More Details

Zero-truncated Poisson regression for sparse multiway count data corrupted by false zeros

Information and Inference

Dunlavy, Daniel M.; Lehoucq, Rich; Lopez, Oscar F.

We propose a novel statistical inference methodology for multiway count data that is corrupted by false zeros that are indistinguishable from true zero counts. Our approach consists of zero-truncating the Poisson distribution to neglect all zero values. This simple truncated approach dispenses with the need to distinguish between true and false zero counts and reduces the amount of data to be processed. Inference is accomplished via tensor completion that imposes low-rank tensor structure on the Poisson parameter space. Our main result shows that an N-way rank-R parametric tensor M ∈ (0, ∞)I×.....×I generating Poisson observations can be accurately estimated by zero-truncated Poisson regression from approximately IR2 log22(I) non-zero counts under the nonnegative canonical polyadic decomposition. Our result also quantifies the error made by zero-truncating the Poisson distribution when the parameter is uniformly bounded from below. Therefore, under a low-rank multiparameter model, we propose an implementable approach guaranteed to achieve accurate regression in under-determined scenarios with substantial corruption by false zeros. Several numerical experiments are presented to explore the theoretical results.

More Details

Discerning Deception: An Empirically-Driven Agent-Based Model of Expert Evaluation of Scientific Content

Emery, Benjamin F.; Verzi, Stephen J.; Dickson, Danielle S.; Gunda, Thushara

Both human subject experiments and computational, modeling and simulations have been used to study detection of deception. This work aims to combine these two methods by integrating empirically-derived information (from human subject experiments) into agent-based models to generate novel insights into the complex problems of detection of disinformation content. Computational experiments are used to simulate across multiple scenarios for evaluation and decision-making regarding the validity of potentially deceptive scientific documents. Factors influencing the human agent behaviors in the model were identified through a human subject experiment that was conducted to evaluate and characterize decision making related to disinformation discernment. Correlation and regression analyses were used to translate insights from the human subjects experiment to inform the parameterization of agent features and scenario development. Three scenarios were evaluated with the agent-based models to help evaluate the replicability of the simulations (validation analysis) and assess the influence of human agent and document features (sensitivity analyses). A replication of the human participant experiment demonstrated that the agent-based simulations compare favorably to empirical findings. The agent-based modeling was then used to conduct sensitivity analysis on the accuracy of deception detection as a function of document proportions and human agent features. Results indicate that precision values are adversely impacted when the proportion of deceptive documents is lower in the overall sample, whereas recall values are more sensitive to changes in human agent features. These findings indicate important nuances in accuracy evaluations that should be further considered (including consideration of potential alternate metrics) in future agent-based models of disinformation. Additional areas for future exploration include extension of simulations to consider other ways to align the agent-based model design with psychological theory and inclusion of agent-agent interactions, especially as it pertains to sharing of scientific information within an organizational context.

More Details

Carbon optimized production of 3-hydroxypropionic acid in the Agile BioFoundry organism Rhodosporidium toruloides

Liu, Di

The modern global economy relies heavily on carbon-based products that are derived from petroleum, which presents sustainability, resource management, and greenhouse gas exacerbated climate change challenges. Due to these challenges, there is the need for a global industrial transition towards green and sustainable production. Microbial production of valuable chemicals from renewable biomass represents one promising route. However, high-volume low-value products such as commodity chemicals are still difficult to make profitable. One fundamental bottleneck is a waste of more than 1/3 of the feedstock carbon as CO2 in the fermentation process. Here the project focuses on fundamentally reconfiguring the metabolism to reduce CO2 loss in central metabolic pathways thereby also improving bioproduct yields. Here we present technologies to prevent CO2 loss and balance reducing equivalents within the cell to enable complete conversion of glucose from renewable feedstocks into bioproducts.

More Details

Assessing the nature of large language models: A caution against anthropocentrism

Speed, Ann E.

Generative AI models garnered a large amount of public attention and speculation with the release of OpenAI’s chatbot, ChatGPT in November of 2022. At least two opinion camps exist – one that is excited about the possibilities these models offer for fundamental changes to human tasks, and another that is highly concerned about the power these models seem to have – especially since the release of GPT-4, which was trained on multimodal data and has ~1.7 trillion (T) parameters. We evaluated some concerns regarding these models’ power by assessing GPT 3.5 using standard, normed, and validated cognitive and personality measures. These measures come from the tradition of psychometrics in experimental psychology and have a long history of providing valuable insights and predictive distinctions in humans. For this seedling project, we developed a battery of tests that allowed us to estimate the boundaries of some of these models’ capabilities, how stable those capabilities are over a short period of time, and how they compare to humans.

More Details

Analysis of Neural Networks as Random Dynamical Systems

Hudson, Joshua L.; Diaz-Ibarra, Oscar H.; D'Elia, Marta; Najm, Habib N.; Rosso, Haley; Ruthotto, Lars; Sargsyan, Khachik

In this report we present our findings and outcomes of the NNRDS (analysis of Neural Networks as Random Dynamical Systems) project. The work is largely motivated by the analogy of a large class of neural networks (NNs) with a discretized ordinary differential equation (ODE) schemes. Namely, residual NNs, or ResNets, can be viewed as a discretization of neural ODEs (NODEs) where the NN depth plays the role of the time evolution. We employ several legacy tools from ODE theory, such as stiffness, nonlocality, autonomicity, to enable regularization of ResNets thus improving their generalization capabilities. Furthermore, armed with NN analysis tools borrowed from the ODE theory, we are able to efficiently augment NN predictions with uncertainty overcoming wellknown dimensionality challenges and adding a degree of trust towards NN predictions. Finally, we have developed a Python library QUiNN (Quantification of Uncertainties in Neural Networks) that incorporates improved-architecture ResNets, besides classical feed-forward NNs, and contains wrappers to PyTorch NN models enabling several major classes of uncertainty quantification methods for NNs. Besides synthetic problems, we demonstrate the methods on datasets from climate modeling and materials science.

More Details

Gate protection for vertical gallium nitride trench MOSFETs: The buried field shield ☆

e-Prime - Advances in Electrical Engineering, Electronics and Energy

Binder, Andrew; Cooper, James A.; Steinfeldt, Jeffrey A.; Allerman, A.A.; Foulk, James W.; Yates, Luke; Kaplar, Robert

This paper describes a process for forming a buried field shield in GaN by an etch-and-regrowth process, which is intended to protect the gate dielectric from high fields in the blocking state. GaN trench MOSFETs made at Sandia serve as the baseline to show the limitations in making a trench gated device without a method to protect the gate dielectric. Device data coupled with simulations show device failure at 30% of theoretical breakdown for devices made without a field shield. Implementation of a field shield reduces the simulated electric field in the dielectric to below 4 MV/cm at breakdown, which eliminates the requirement to derate the device in order to protect the dielectric. For realistic lithography tolerances, however, a shield-to-channel distance of 0.4 μm limits the field in the gate dielectric to 5 MV/cm and requires a small margin of device derating to safeguard a long-term reliability and lifetime of the dielectric.

More Details

Self-healing, self-assembling islanded power systems using only local measurements

Ropp, Michael E.; Lavrova, Olga; Reno, Matthew J.; Silva, Elijah; Densel, McKendree A.; Kassabian, Lara N.; Biswal, Milan; Ramoko, Ada; Ranade, Satish J.

This SAND report collects the results from the LDRD project “SHAZAM”, which aimed to push the limits of performance for self-healing, self-assembling power systems whose sectionalizing and load-control agents rely on local measurements only (i.e., only what they can measure at their own terminals, with no data sharing between agents). This work includes self-networking microgrids. The key objectives of this work were a) to demonstrate how high the performance of local-measurement-only self-assembling power systems can be; and b) to solve certain technical problems associated with such systems, such as their inability to prevent the accidental formation of closed loops and their tendency to thermally overload some conductors. “SHAZAM” investigators a) demonstrated that the performance of such systems can be surprisingly high, b) demonstrated that such systems are quite robust to all kinds of variations, and c) developed and demonstrated solutions to several key challenges associated with this type of system.

More Details

Canada-US Blended Cyber-Physical Security Exercise (Final Report)

Erdman, Matthew K.; Rowland, Mike; Hahn, Andrew S.; Pierce, Remengton; Romero, Anita M.

The Canada-US Blended Cyber-Physical Exercise was a successful, first of its kind, multiorganization and multi-laboratory exercise that culminated years of complex system development and planning. The project aimed to answer three driving research questions, (1) How do cyberattacks support malicious acts leading to theft or sabotage [at a nuclear site]? (2) What are aspects of an effective combined cyber-physical response? (3) How to evaluate effectiveness of that response? Which derived the following primary objectives, 1. The May 2023 Cyber-Physical Exercise shall present a cyber-attack scenario that supports malicious acts leading to theft or sabotage. 2. The May 2023 Cyber-Physical Exercise shall define aspects of an effective combined cyber-physical response. 3. Analysis of the May 2023 Cyber-Physical Exercise shall evaluate the effectiveness of the incident response against pre-established exercise evaluation criteria. 4. Analysis of the May 2023 Cyber-Physical Exercise shall assess the effectiveness of the evaluation criteria itself. 5. Exercises shall be performed in a real-life environment. The team believes these objectives were met, and the evidence will be presented in this report. Due to the novelty of the exercise, there were several lessons learned that will be presented in this report.

More Details

Identifying crack tip position and stress intensity factors from displacement data

International Journal of Fracture

Gupta, Swati; West, Grant; Wilson, Mark A.; Grutzik, S.J.; Warner, Derek H.

Fracture prognosis and characterization efforts require knowledge of crack tip position and the Stress Intensity Factors (SIFs) acting in the vicinity of the crack. Here, we present an efficient numerical approach to infer both of these characteristics under a consistent theoretical framework from noisy, unstructured displacement data. The novel approach utilizes the separability of the asymptotic linear elastic fracture mechanics fields to expedite the search for crack tip position and is particularly useful for noisy displacement data. The manuscript begins with an assessment of the importance of accurately locating crack tip position when quantifying the SIFs from displacement data. Next, the proposed separability approach for quickly inferring crack tip position is introduced. Comparing to the widely used displacement correlation approach, the performance of the separability approach is assessed. Cases involving both noisy data and systematic deviation from the asymptotic linear elastic fracture mechanics model are considered, e.g. inelastic material behavior and finite geometries. An open source python implementation of the proposed approach is available for use by those doing field and laboratory work involving digital image correlation and simulations, e.g. finite element, discrete element, molecular dynamics and peridynamics, where the crack tip position is not explicitly defined.

More Details

Sulfur (3P) Reaction with Conjugated Dienes Gives Cyclization to Thiophenes under Single Collision Conditions

Journal of Physical Chemistry Letters

Li, Hongwei; Zador, Judit; Suits, Arthur G.

We combine crossed-beam velocity map imaging with high-level ab initio/transition state theory modeling of the reaction of S(3P) with 1,3-butadiene and isoprene under single collision conditions. For the butadiene reaction, we detect both H and H2 loss from the initial adduct, and from reaction with isoprene, we see both H loss and methyl loss. Theoretical calculations confirm these arise following intersystem crossing to the singlet surface forming long-lived intermediates. For the butadiene reaction, these lose H2 to form thiophene as the dominant channel, H to form the detected 2H-thiophenyl radical, or ethene, giving thioketene. For isoprene, additional reaction products are suggested by theory, including the observed H and methyl loss radicals, but also methyl thiophene, thioformaldehyde, and thioketene. The results for S(3P) + 1,3-butadiene, showing direct cyclization to the aromatic product and yielding few bimolecular product channels, are in striking contrast to those for the analogous O(3P) reaction.

More Details

Organizational System Resilience to Disinformation: A Viable Systems Model Exploration

INCOSE International Symposium

Caskey, Susan; Gunda, Thushara

This paper explores the utility of organizational system modeling frameworks to provide valuable insight into information flows within organizations and subsequently the opportunities for increasing resilience against disinformation campaigns targeting the system's ability to utilize information within its decision making. Disinformation is a growing challenge for many organizations and in recent years has created delay in decision making. Here the paper has utilized the viable systems model (VSM) to characterize organizational systems and used this approach to outline potential subsystem requirements to promote resilience of the system. The results of this paper can support the development of simulations and models considering the human elements within the system as well as support the development of quantitative measures of resilience.

More Details

Evaluation of Nuclear Spent Fuel Disposal in Clay-Bearing Rock - Process Model Development and Experimental Studies

Jove-Colon, Carlos F.; Ho, Tuan A.; Lopez, Carlos M.; Rutqvist, Jonny; Guglielmi, Yves; Hu, Mengsu; Sasaki, Tsubasa; Yoon, Sangcheol; Steefel, Carl I.; Tournassat, Christophe; Mital, Utkarsh; Luu, Keurfon; Sauer, Kirsten B.; Caporuscio, Florie A.; Rock, Marlena J.; Zandanel, Amber E.; Zavarin, Mavrik; Wolery, Thomas J.; Chang, Elliot; Han, Sol-Chan; Wainwright, Haruko; Greathouse, Jeffery A.

This report represents the milestone deliverable M2SF-23SN010301072 “Evaluation of Nuclear Spent Fuel Disposal in Clay-Bearing Rock - Process Model Development and Experimental Studies” The report provides a status update of FY23 activities for the work package Argillite Disposal work packages for the DOE-NE Spent Fuel Waste Form Science and Technology (SFWST) Program. Clay-rich geological media (often referred as shale or argillite) are among the most abundant type of sedimentary rock near the Earth’s surface. Argillaceous rock formations have the following advantageous attributes for deep geological nuclear waste disposal: widespread geologic occurrence, found in stable geologic settings, low permeability, self-sealing properties, low effective diffusion coefficient, high sorption capacity, and have the appropriate depth and thickness to host nuclear waste repository concepts. The DOE R&D program under the Spent Fuel Waste Science Technology (SFWST) campaign has made key progress (through experiment, modeling, and testing) in the study of chemical and physical phenomena that could impact the long-term safety assessment of heat-generating nuclear waste disposition in clay/shale/argillaceous rock. International collaboration activities comprising field-scale heater tests, field data monitoring, and laboratory-scale experiments provide key information on changes to the engineered barrier system (EBS) material exposed high thermal loads. Moreover, consideration of direct disposal of large capacity dual-purpose canisters (DPCs) as part of the back-end SNF waste disposition strategy has generated interest in improving our understanding of the effects of elevated temperatures on the engineered barrier system (EBS) design concepts. Chemical and structural analyses of sampled bentonite material from laboratory tests at elevated temperatures are key to the characterization of thermal effects affecting bentonite clay barrier performance. The knowledge provided by these experiments is crucial to constrain the extent of sacrificial zones in the EBS design during the thermal period. Thermal, hydrologic, mechanical, and chemical (THMC) data collected from heater tests and laboratory experiments have been used in the development, validation, and calibration of THMC simulators to model near-field coupled processes. This information leads to the development of simulation approaches to assess issues on coupled processes involving porous media flow, transport, geomechanical phenomena, chemical interactions with barrier/geologic materials, and the development of EBS concepts. These lines of knowledge are central to the design of deep geological backfilled repository concepts where temperature plays a key role in the EBS behavior, potential interactions with host rock, and long-term performance in the safety assessment.

More Details

The Effect of DPC Fillers on FEPs Relevant to Disposal of SNF

Price, Laura L.; Rigali, Mark J.; Fortner, Jeffery

The US Department of Energy (DOE) is investigating the use of different materials that could be used to fill the void space inside a dual-purpose canister (DPC) loaded with spent nuclear fuel (SNF) just before it is emplaced in a deep geologic repository. The purpose of adding filler material is to maintain subcritical conditions in the repository during the postclosure period, which can span up to 1,000,000 years. Several types of materials have been proposed, including metals, cements, particulates, and glass. Part of this investigation addresses how the presence of filler material inside a DPC will affect the performance of the repository with respect to the repository features; the consequences of events that may occur; and the multiple thermal, hydrologic, chemical, and mechanical processes that may occur in a deep geologic repository over long timescales. This report describes some of the filler materials that have been proposed and studied; identifies 11 features, 6 events, and 25 processes that may be affected by the presence of filler materials; and discusses the effects that may require consideration for each feature, event, or process. The results of this study can be used to direct appropriate research and to develop suitable models if the DOE decides to use fillers to maintain subcritical conditions in DPCs used to dispose of SNF.

More Details

Flow Strength Measurements of Wrought and AM SS304L via Pressure Shear Plate Impact Experiments

Journal of Dynamic Behavior of Materials

Borg, John P.; Alexander, Charles S.; Lajeunesse, Jeffrey W.; Helminiak, Nathaniel S.; Specht, Paul E.

Pressure-shear plate impact experiments were performed to quantify flow strength of wrought, as-built additively manufactured (AM), and heat-treated and recrystallized AM 304 L stainless steel (SS304L) under combined loading. Impact velocities spanned between 0.03 and 0.24 mm/μs, resulting in corresponding pressures of 0.62–5.93 GPa. Flow strength measurements are comparable for the sample variants across the studied loading conditions; however, shear wave structures significantly differ between sample type. Microstructurally aware simulations indicate local strain differences attributed to anisotropic elastic constants of large grains (~1 mm) in the as-built and heat-treated AM may impede the ability to uniformly transmit a shear wave.

More Details

Canonical and noncanonical Hamiltonian operator inference

Computer Methods in Applied Mechanics and Engineering

Gruber, Anthony D.; Tezaur, Irina K.

Here, a method for the nonintrusive and structure-preserving model reduction of canonical and noncanonical Hamiltonian systems is presented. Based on the idea of operator inference, this technique is provably convergent and reduces to a straightforward linear solve given snapshot data and gray-box knowledge of the system Hamiltonian. Examples involving several hyperbolic partial differential equations show that the proposed method yields reduced models which, in addition to being accurate and stable with respect to the addition of basis modes, preserve conserved quantities well outside the range of their training data.

More Details

Linearization errors in discrete goal-oriented error estimation

Computer Methods in Applied Mechanics and Engineering

Granzow, Brian N.; Seidl, D.T.; Bond, Stephen D.

This paper is concerned with goal-oriented a posteriori error estimation for nonlinear functionals in the context of nonlinear variational problems solved with continuous Galerkin finite element discretizations. A two-level, or discrete, adjoint-based approach for error estimation is considered. The traditional method to derive an error estimate in this context requires linearizing both the nonlinear variational form and the nonlinear functional of interest which introduces linearization errors into the error estimate. In this paper, we investigate these linearization errors. In particular, we develop a novel discrete goal-oriented error estimate that accounts for traditionally neglected nonlinear terms at the expense of greater computational cost. We demonstrate how this error estimate can be used to drive mesh adaptivity. Here, we show that accounting for linearization errors in the error estimate can improve its effectivity for several nonlinear model problems and quantities of interest. We also demonstrate that an adaptive strategy based on the newly proposed estimate can lead to more accurate approximations of the nonlinear functional with fewer degrees of freedom when compared to uniform refinement and traditional adjoint-based approaches.

More Details

Testing of Microchannels and Lab-Grown Stress Corrosion Cracks for Quantification of Aerosol Transmission

Jones, Philip G.; Fascitelli, Dominic G.; Perales, Adrian G.; Durbin, S.

The formation of a stress corrosion crack (SCC) in the canister wall of a dry cask storage system (DCSS) has been identified as a potential issue for the long-term storage of spent nuclear fuel. The presence of an SCC in a storage system could represent a through-wall flow path from the canister interior to the environment. Modern, vertical DCSSs are of particular interest due to the commercial practice of using higher backfill pressures in the canister, up to approximately 800 kPa, compared to their horizontal counterparts. This pressure differential offers a relatively high driving potential for blowdown of any particulates that might be present in the canister. In this study, the rates of gas flow and aerosol transmission of a spent fuel surrogate through an engineered microchannel with dimensions representative of an SCC were evaluated experimentally using coupled mass flow and aerosol analyzers. The microchannel was formed by mating two gage blocks with a linearly tapering slot orifice nominally 13 μm (0.005 in.) tall on the upstream side and 25 μm (0.0010 in.) tall on the downstream side. The orifice is 12.7 mm (0.500 in.) wide by 8.86 mm (0.349 in.) long (flow length). Surrogate aerosols of cerium oxide, CeO2, were seeded and mixed with either helium or air inside a pressurized tank. The aerosol characteristics were measured immediately upstream and downstream of the simulated SCC at elevated and ambient pressures, respectively. These data sets are intended to add to previous testing that characterized SCCs under well-controlled boundary conditions through the inclusion of testing improvements that establish initial conditions in a more consistent way. While the engineered microchannel has dimensions similar to actual SCCs, it does not reproduce the tortuous path the aerosol laden flow would have to traverse for eventual transmission. SCCs can be rapidly grown in a laboratory setting given the right conditions, and initial characterization and clean-flow testing has begun on lab grown crack samples provided to Sandia National Laboratories (SNL). Many such samples are required to produce statistically relevant transmission results, and SNL is developing a procedure to produce samples in welded steel plates. These ongoing testing efforts are focused on understanding the evolution in both size and quantity of a hypothetical release of aerosolized spent fuel particles from failed fuel to the canister interior and ultimately through an SCC.

More Details

Sierra/SolidMechanics 5.16 Verification Tests Manual

Wagman, Ellen B.; Beckwith, Frank; Buche, Michael R.; De Frias, Gabriel J.; Manktelow, Kevin; Merewether, Mark T.; Miller, Scott T.; Parmar, Krishen J.; Shelton, Timothy R.; Thomas, Jesse D.; Trageser, Jeremy; Treweek, Benjamin; Veilleux, Michael G.

Presented in this document is a small portion of the tests that exist in the Sierra/SolidMechanics (Sierra/SM) verification test suite. Most of these tests are run nightly with the Sierra/SM code suite, and the results of the test are checked versus the correct analytical result. For each of the tests presented in this document, the test setup, a description of the analytic solution, and comparison of the Sierra/SM code results to the analytic solution is provided. Mesh convergence is also checked on a nightly basis for several of these tests. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems. Additional example problems are provided in the Sierra/SM Example Problems Manual. Note, many other verification tests exist in the Sierra/SM test suite, but have not yet been included in this manual.

More Details

Sierra/Solid Mechanics 5.16 User's Guide

Miller, Scott T.; Beckwith, Frank; Buche, Michael R.; De Frias, Gabriel J.; Gampert, Scott O.; Manktelow, Kevin; Merewether, Mark T.; Parmar, Krishen J.; Rand, Matthew G.; Shelton, Timothy R.; Thomas, Jesse D.; Trageser, Jeremy; Treweek, Benjamin; Veilleux, Michael G.; Wagman, Ellen B.

Sierra/SolidMechanics (Sierra/SM) is a Lagrangian, three-dimensional code for finite element analysis of solids and structures. It provides capabilities for explicit dynamic, implicit quasistatic and dynamic analyses. The explicit dynamics capabilities allow for the efficient and robust solution of models with extensive contact subjected to large, suddenly applied loads. For implicit problems, Sierra/SM uses a multi-level iterative solver, which enables it to effectively solve problems with large deformations, nonlinear material behavior, and contact. Sierra/SM has a versatile library of continuum and structural elements, and a large library of material models. The code is written for parallel computing environments enabling scalable solutions of extremely large problems for both implicit and explicit analyses. It is built on the SIERRA Framework, which facilitates coupling with other SIERRA mechanics codes. This document describes the functionality and input syntax for Sierra/SM.

More Details

Detection of False Data Injection Attacks in Battery Stacks Using Input Noise-Aware Nonlinear State Estimation and Cumulative Sum Algorithms

IEEE Transactions on Industry Applications

Brien, Vittal S.'.; Rao, Vittal S.; Trevizan, Rodrigo D.

Grid-scale battery energy storage systems (BESSs) are vulnerable to false data injection attacks (FDIAs), which could be used to disrupt state of charge (SoC) estimation. Inaccurate SoC estimation has negative impacts on system availability, reliability, safety, and the cost of operation. In this article a combination of a Cumulative Sum (CUSUM) algorithm and an improved input noise-aware extended Kalman filter (INAEKF) is proposed for the detection and identification of FDIAs in the voltage and current sensors of a battery stack. The series-connected stack is represented by equivalent circuit models, the SoC is modeled with a charge reservoir model and the states are estimated using the INAEKF. Further, the root mean squared error of the states’ estimation by the modified INAEKF was found to be superior to the traditional EKF. By employing the INAEKF, this article addresses the research gap that many state estimators make asymmetrical assumptions about the noise corrupting the system. Additionally, the INAEKF estimates the input allowing for the identification of FDIA, which many alternative methods are unable to achieve. The proposed algorithm was able to detect attacks in the voltage and current sensors in 99.16% of test cases, with no false positives. Utilizing the INAEKF compared to the standard EKF allowed for the identification of FDIA in the input of the system in 98.43% of test cases.

More Details

Theoretical and Experimental Advances in High-Pressure Behaviors of Nanoparticles

Chemical Reviews

Ho, Tuan A.; Fan, Hongyou

Using compressive mechanical forces, such as pressure, to induce crystallographic phase transitions and mesostructural changes while modulating material properties in nanoparticles (NPs) is a unique way to discover new phase behaviors, create novel nanostructures, and study emerging properties that are difficult to achieve under conventional conditions. In recent decades, NPs of a plethora of chemical compositions, sizes, shapes, surface ligands, and self-assembled mesostructures have been studied under pressure by in-situ scattering and/or spectroscopy techniques. As a result, the fundamental knowledge of pressure-structure-property relationships has been significantly improved, leading to a better understanding of the design guidelines for nanomaterial synthesis. In the present review, we discuss experimental progress in NP high-pressure research conducted primarily over roughly the past four years on semiconductor NPs, metal and metal oxide NPs, and perovskite NPs. We focus on the pressure-induced behaviors of NPs at both the atomic- and mesoscales, inorganic NP property changes upon compression, and the structural and property transitions of perovskite NPs under pressure. We further discuss in depth progress on molecular modeling, including simulations of ligand behavior, phase-change chalcogenides, layered transition metal dichalcogenides, boron nitride, and inorganic and hybrid organic-inorganic perovskites NPs. These models now provide both mechanistic explanations of experimental observations and predictive guidelines for future experimental design. We conclude with a summary and our insights on future directions for exploration of nanomaterial phase transition, coupling, growth, and nanoelectronic and photonic properties.

More Details

Identifying native point defect configurations in α-alumina

Journal of Physics Condensed Matter

Kononov, Alina K.; Lee, Cheng W.; Shapera, Ethan P.; Schleife, Andre

Intimately intertwined atomic and electronic structures of point defects govern diffusion-limited corrosion and underpin the operation of optoelectronic devices. For some materials, complex energy landscapes containing metastable defect configurations challenge first-principles modeling efforts. Here, we thoroughly reevaluate native point defect geometries for the illustrative case of α-Al2O3 by comparing three methods for sampling candidate geometries in density functional theory calculations: displacing atoms near a naively placed defect, initializing interstitials at high-symmetry points of a Voronoi decomposition, and Bayesian optimization. We find symmetry-breaking distortions for oxygen vacancies in some charge states, and we identify several distinct oxygen split-interstitial geometries that help explain literature discrepancies involving this defect. We also report a surprising and, to our knowledge, previously unknown trigonal geometry favored by aluminum interstitials in some charge states. These new configurations may have transformative impacts on our understanding of defect migration pathways in aluminum-oxide scales protecting metal alloys from corrosion. Overall, the Voronoi scheme appears most effective for sampling candidate interstitial sites because it always succeeded in finding the lowest-energy geometry identified in this study, although no approach found every metastable configuration. Finally, we show that the position of defect levels within the band gap can depend strongly on the defect geometry, underscoring the need to conduct careful searches for ground-state geometries in defect calculations.

More Details

Sierra/SolidMechanics 5.16 Examples Manual

Wagman, Ellen B.; Beckwith, Frank; Buche, Michael R.; De Frias, Gabriel J.; Manktelow, Kevin; Merewether, Mark T.; Miller, Scott T.; Parmar, Krishen J.; Shelton, Timothy R.; Thomas, Jesse D.; Trageser, Jeremy; Treweek, Benjamin; Veilleux, Michael G.

Presented in this document are tests that exist in the Sierra/SolidMechanics example problem suite, which is a subset of the Sierra/SM regression and performance test suite. These examples showcase common and advanced code capabilities. A wide variety of other regression and verification tests exist in the Sierra/SM test suite that are not included in this manual.

More Details

Sierra/SolidMechanics 5.16 Capabilities in Development Manual

Wagman, Ellen B.; Beckwith, Frank; Buche, Michael R.; De Frias, Gabriel J.; Manktelow, Kevin; Merewether, Mark T.; Miller, Scott T.; Parmar, Krishen J.; Shelton, Timothy R.; Thomas, Jesse D.; Trageser, Jeremy; Treweek, Benjamin; Veilleux, Michael G.

This user’s guide documents capabilities in Sierra/SolidMechanics which remain “in-development” and thus are not tested and hardened to the standards of capabilities listed in Sierra/SM 5.16 User’s Guide. Capabilities documented herein are available in Sierra/SM for experimental use only until their official release. These capabilities include, but are not limited to, novel discretization approaches such as the conforming reproducing kernel (CRK) method, numerical fracture and failure modeling aids such as the extended finite element method (XFEM) and J-integral, explicit time step control techniques, dynamic mesh rebalancing, as well as a variety of new material models and finite element formulations.

More Details

Sierra/SolidMechanics 5.16 Theory Manual

Wagman, Ellen B.; Beckwith, Frank; Buche, Michael R.; De Frias, Gabriel J.; Manktelow, Kevin; Merewether, Mark T.; Miller, Scott T.; Parmar, Krishen J.; Shelton, Timothy R.; Thomas, Jesse D.; Trageser, Jeremy; Treweek, Benjamin; Veilleux, Michael G.

Presented in this document are the theoretical aspects of capabilities contained in the Sierra/SM code. This manuscript serves as an ideal starting point for understanding the theoretical foundations of the code. For a comprehensive study of these capabilities, the reader is encouraged to explore the many references to scientific articles and textbooks contained in this manual. It is important to point out that some capabilities are still in development and may not be presented in this document. Further updates to this manuscript will be made as these capabilities come closer to production level.

More Details

Economic competitiveness of pultruded fiber composites for wind turbine applications

Composites. Part B, Engineering

Ennis, Brandon L.; Norris Jr., Robert E.; Das, Sujit

Pultrusion manufacturing of fiber reinforced polymers has been shown to yield some of the highest mechanical properties for unidirectional composites, having a high degree of fiber alignment with consistent performance. Pultrusions offer a low-cost manufacturing approach for producing unidirectional composites with a constant cross-section and are used in many applications, including spar caps of wind turbine blades. However, as an intermediate processing step for wind blades, the additional cost of manufacturing pultrusions must be accompanied by sufficient increases in mechanical performance and system benefits. Wind turbine blades are manufactured using vacuum-assisted resin transfer molding with infused unidirectional fiberglass or carbon pultrusions for the spar cap. Infused fiberglass composites are among the most cost-effective structural materials available and replacing this material in the cost-driven wind industry has proven challenging, where infused fiberglass spar caps are still the predominant material system in use. To evaluate alternative material systems in a pultruded composite form, it is necessary to understand the costs for this additional manufacturing step which are shown to add 33%–55% on top of the material costs. A pultrusion cost model has been developed and used to quantify cost sensitivities to various processing parameters. The mechanical performance for pultruded composites is improved versus resin-infusion manufacturing with a 17% increase in design strength at a constant fiber volume fraction, but also enables higher achievable fiber volume fractions. The cost-specific mechanical performance is compared as a function of processing parameters for pultruded composites to identify the opportunities for alternative material and manufacturing approaches for wind turbine spar caps. Finally, four materials are compared in a representative wind turbine blade model to assess the performance of pultruded carbon fiber systems and pultruded fiberglass relative to infused fiberglass, where the pultruded systems produce lower weight blades with various cost distinctions.

More Details

Combinatoric Researchers at Sandia National Laboratories: An ethnographic study

Turnley, Jessica G.; Bull, Diana L.; Tsao, Jeffrey Y.; Gambill, Peter M.

Combinatorial research, the incorporation of multiple domains in a unified research agenda, is a strong contributor to the growing corpus of scientific knowledge and technological advancements worldwide. In 2019, a study team at Sandia National Laboratories (Sandia, the Labs) used a systems approach to understand if and how combinatorial research agendas were playing out at Sandia, one of America’s premiere national security research venues. The study team used the data collection effort described in this report to ground the discussion of the broad social environment and particular organizational environments within which combinatorial research agendas are developed, as described in the full study. The team interviewed twenty-five staff members engaged in combinatorial research at Sandia in New Mexico and California during the months of June – September 2019. Analysis of this corpus of ethnographic data, combined with knowledge drawn from relevant literature, concluded that there is an individual type who would be most likely to engage in combinatoric research, described by both demographic and psychographic components. This type demonstrates both intellectual depth and the curiosity which leads to breadth. The analysis also showed that Sandia as an organization and as perceived by the respondents, set up tension for the combinatorial researcher. While Sandia was generally agnostic towards combinatorial research, that agnostic posture depended on whether the researcher was able to fulfill all her customer obligations – obligations that are structured primarily in transactional relationships with customers with relatively short time horizons. This report concludes with suggestions for additional research in the ethnographic domain.

More Details

Analyzing barium titanate TiO2 surface interactions with tert-butylphosphonic acid using density functional theory

MRS communications

Marvin, Jessica; Nicholson, James; Turek, Cedar; Iwasa, Erina; Pangrekar, Nilay; Fowler, Whitney C.; Van Ginhoven, Renee M.; Monson, Todd

Barium titanate (BTO) is a widely researched ferroelectric useful for energy storage. While BTO’s surface chemistry is commonly studied using density functional theory, little has been published on the TiO2 surface. Here, we determined that BTO’s surface response can be decoupled from the ferroelectric response by using a pre-optimized ferroelectric slab and allowing only the top three atomic z-layers to respond to ligand binding. Multiple favorable binding modes were identified for hydrogen, hydroxyl, water, and tert-butyl phosphonic acid on BTO’s TiO2 surface. Of these ligands, tBuPA dominates surface binding with binding energies as low as -2.61 eV for its nine configurations.

More Details

Elucidating Primary Degradation Mechanisms in High-Cycling-Capacity, Compositionally Tunable High-Entropy Hydrides

ACS Applied Materials and Interfaces

Strozi, Renato B.; Witman, Matthew D.; Stavila, Vitalie; Cizek, Jakub; Sakaki, Kouji; Kim, Hyunjeong; Melikhova, Oksana; Perriere, Loic; Machida, Akihiko; Nakahira, Yuki; Zepon, Guilherme; Botta, Walter J.; Zlotea, Claudia

The hydrogen sorption properties of single-phase bcc (TiVNb)100-xCrx alloys (x = 0-35) are reported. All alloys absorb hydrogen quickly at 25 °C, forming fcc hydrides with storage capacity depending on the Cr content. A thermodynamic destabilization of the fcc hydride is observed with increasing Cr concentration, which agrees well with previous compositional machine learning models for metal hydride thermodynamics. The steric effect or repulsive interactions between Cr-H might be responsible for this behavior. The cycling performances of the TiVNbCr alloy show an initial decrease in capacity, which cannot be explained by a structural change. Pair distribution function analysis of the total X-ray scattering on the first and last cycled hydrides demonstrated an average random fcc structure without lattice distortion at short-range order. If the as-cast alloy contains a very low density of defects, the first hydrogen absorption introduces dislocations and vacancies that cumulate into small vacancy clusters, as revealed by positron annihilation spectroscopy. Finally, the main reason for the capacity drop seems to be due to dislocations formed during cycling, while the presence of vacancy clusters might be related to the lattice relaxation. Having identified the major contribution to the capacity loss, compositional modifications to the TiVNbCr system can now be explored that minimize defect formation and maximize material cycling performance.

More Details

Membrane-localized neoantigens predict the efficacy of cancer immunotherapy

Cell Reports Medicine

Krishnakumar, Raga; Briquez, Priscilla S.; Goldberger, Zoe; Hauert, Sylvie; Chang, Kevin; Kurtanich, Trevin; Alpar, Aaron T.; Repond, Gregoire; Wang, Yue; Gomes, Suzana; Siddarth, Prabha; Swartz, Melody A.; Hubbell, Jeffrey A.

Immune checkpoint immunotherapy (ICI) can re-activate immune reactions against neoantigens, leading to remarkable remission in cancer patients. Nevertheless, only a minority of patients are responsive to ICI, and approaches for prediction of responsiveness are needed to improve the success of cancer treatments. While the tumor mutational burden (TMB) correlates positively with responsiveness and survival of patients undergoing ICI, the influence of the subcellular localizations of the neoantigens remains unclear. Here, we demonstrate in both a mouse melanoma model and human clinical datasets of 1,722 ICI-treated patients that a high proportion of membrane-localized neoantigens, particularly at the plasma membrane, correlate with responsiveness to ICI therapy and improved overall survival across multiple cancer types. We further show that combining membrane localization and TMB analyses can enhance the predictability of cancer patient response to ICI. Our results may have important implications for establishing future clinical guidelines to direct the choice of treatment toward ICI.

More Details

Aluminum scandium nitride films for piezoelectric transduction into silicon at gigahertz frequencies

Applied Physics Letters

Hackett, Lisa A.P.; Miller, M.; Beaucejour, R.; Nordquist, C.M.; Taylor, J.C.; Santillan, S.; Olsson, R.H.; Eichenfield, M.

Recent advances in the growth of aluminum scandium nitride films on silicon suggest that this material platform could be applied for quantum electromechanical applications. Here, we model, fabricate, and characterize microwave frequency silicon phononic delay lines with transducers formed in an adjacent aluminum scandium nitride layer to evaluate aluminum scandium nitride films, at 32% scandium, on silicon interdigital transducers for piezoelectric transduction into suspended silicon membranes. We achieve an electromechanical coupling coefficient of 2.7% for the extensional symmetric-like Lamb mode supported in the suspended material stack and show how this coupling coefficient could be increased to at least 8.5%, which would further boost transduction efficiency and reduce the device footprint. The one-sided transduction efficiency, which quantifies the efficiency at which the source of microwave photons is converted to microwave phonons in the silicon membrane, is 10% at 5 GHz at room temperature and, as we discuss, there is a path to increase this toward near-unity efficiency based on a combination of modified device design and operation at cryogenic temperatures.

More Details

SFWST Disposal Research R&D 5-Year Plan (FY2023 Update)

Sassani, David C.; Birkholzer, Jens; Camphouse, Russell; Freeze, Geoffrey; Meacham, Janette; Mendez, Carmen M.; Price, Laura L.; Stein, Emily

This FY2023 report is the second update to the Disposal Research (DR) Research and Development (R&D) 5-year plan for the Spent Fuel and Waste Science and Technology (SFWST) Campaign DR R&D activities. In the planning for FY2020 in the U.S. Department of Energy (DOE) NE-81 SFWST Campaign, the DOE requested development of a high-level summary plan for activities in the DR R&D program for the next five (5)-year period, with periodic updates to this summary plan. The DR R&D 5-year plan was provided to the DOE based initially on the FY2020 priorities and program structure (initial 2020 version of this 5-year plan) and provides a strategic summary guide to the work within the DR R&D technical areas (Control Accounts, CA), focusing on the highest priority technical thrusts. This 5-year plan is a living document (planned to be updated periodically) that provides review of SFWST R&D accomplishments (as seen on the 2021 revision of this 5-year plan), describes changes to technical R&D prioritization based on (a) progress in each technical area (including external technical understanding) with specific accomplishments and (b) any changes in SFWST Campaign objectives and/or funding levels (i.e., Program Direction). Updates to this 5-year plan include the DR R&D adjustments to high-priority knowledge gaps to be investigated in the near-term, as well as the updated longer-term DR R&D directions for the program activities. This plan fulfills the Milestone M2SF23SN010304083 in DR Work Package (WP) SF-23SN01030408 (GDSA - Framework Development – SNL).

More Details

An Ab Initio-Derived Force Field for Amorphous Silica Interfaces for Use in Molecular Dynamics Simulations

Journal of Physical Chemistry. C

Senanayake, Hasini S.; Wimalasiri, Pubudu N.; Godahewa, Sahan M.; Thompson, Ward H.; Greathouse, Jeffery A.

Here, we present a classical interatomic force field, silica-DDEC, to describe the interactions of amorphous and crystalline silica surfaces, parametrized using density functional theory-based charges. Charge schemes for silica surfaces were developed using the density-derived electrostatic and chemical (DDEC) method, which reproduces atomic charges of the periodic models as well as the electrostatic potential away from the atom sites. Lennard–Jones parameters were determined by requiring the correct description of (i) the amorphous silica density, coordination defects, and local coordination geometry, relative to experimental measurements, and (ii) water-silica interatomic distances compared with ab initio results. Deprotonated surface silanol sites are also described within the model based on DDEC charges. The result is a general electronic structure-derived model for describing fully flexible amorphous and crystalline silica surfaces and interactions of liquids with silica surfaces of varying structure and protonation state.

More Details

Corrosion-Resistant Coatings on Spent Nuclear Fuel Canisters to Mitigate and Repair Potential Stress Corrosion Cracking (FY23 Status)

Nation, B.L.; Knight, A.W.; Maguire, Makeila; Verma, Samay; Click, Natalie; Debrun, Gavin; Mccready, T.A.; Katona, Ryan M.; Schaller, Rebecca S.; Bryan, C.R.

This report summarizes the activities performed by Sandia National Laboratories in FY23 to identify and test coating materials for the prevention, mitigation, and/or repair of potential chloride-induced stress corrosion cracking in spent nuclear fuel dry storage canisters. This work continues efforts by Sandia National Laboratories that are summarized in previous reports from FY20 through FY22 on the same topic. In FY23, Sandia National Laboratories, in collaboration with five industry partners through a memorandum of understanding, evaluated the physical, mechanical, and corrosion-resistance properties of eight different coating systems. The evaluation included thermal and radiation environments relevant to various time periods of storage for spent nuclear fuel canisters. The coating systems include polymeric (polyetherketoneketone, modified polyimide/polyurea, modified phenolic resin, epoxy), organic/inorganic ceramic hybrids (silane-based polyurethane hybrid and a quasi-ceramic sol-gel polyurethane hybrid), and coatings utilizing a Zn-rich primer applied to stainless steel coupons. The results and implications of these tests are summarized in this report. These analyses will be used to identify the most effective coatings for potential use on spent nuclear fuel dry storage canisters and to identify specific needs for further optimization of coating technologies for application on spent nuclear fuel canisters.

More Details

Impedance-Based Detection of NO2 Using Ni-MOF-74: Influence of Competitive Gas Adsorption

ACS Applied Materials and Interfaces

Small, Leo J.; Vornholt, Simon M.; Percival, Stephen J.; Foulk, James W.; Schindelholz, Mara E.; Chapman, Karena W.; Nenoff, Tina M.

Chemically robust, low-power sensors are needed for the direct electrical detection of toxic gases. Metal-organic frameworks (MOFs) offer exceptional chemical and structural tunability to meet this challenge, though further understanding is needed regarding how coadsorbed gases influence or interfere with the electrical response. To probe the influence of competitive gases on trace NO2 detection in a simulated flue gas stream, a combined structure-property study integrating synchrotron powder diffraction and pair distribution function analyses was undertaken, to elucidate how structural changes associated with gas binding inside Ni-MOF-74 pores correlate with the electrical response from Ni-MOF-74-based sensors. Data were evaluated for 16 gas combinations of N2, NO2, SO2, CO2, and H2O at 50 °C. Fourier difference maps from a rigid-body Rietveld analysis showed that additional electron density localized around the Ni-MOF-74 lattice correlated with large decreases in Ni-MOF-74 film resistance of up to a factor of 6 × 103, observed only when NO2 was present. These changes in resistance were significantly amplified by the presence of competing gases, except for CO2. Without NO2, H2O rapidly (<120 s) produced small (1-3×) decreases in resistance, though this effect could be differentiated from the slower adsorption of NO2 by the evaluation of the MOF’s capacitance. Furthermore, samples exposed to H2O displayed a significant shift in lattice parameters toward a larger lattice and more diffuse charge density in the MOF pore. Evaluating the Ni-MOF-74 impedance in real time, NO2 adsorption was associated with two electrically distinct processes, the faster of which was inhibited by competitive adsorption of CO2. Together, this work points to the unique interaction of NO2 and other specific gases (e.g., H2O, SO2) with the MOF’s surface, leading to orders of magnitude decrease in MOF resistance and enhanced NO2 detection. Understanding and leveraging these coadsorbed gases will further improve the gas detection properties of MOF materials.

More Details

Spatiotemporal measurements of striations in a glow discharge’s positive column using laser-collisional induced fluorescence

AIP Advances

White, Zachary K.; Gott, Ryan P.; Bentz, Brian Z.; Xu, Kunning G.

Here we have observed the behavior of striations caused by ionization waves propagating in low-pressure helium DC discharges using the non-invasive laser-collision induced fluorescence (LCIF) diagnostic. To achieve this, we developed an analytic fit of collisional radiative model (CRM) predictions to interpret the LCIF data and recover quantitative two-dimensional spatial maps of the electron density, ne, and the ratios of LCIF emission states that can be correlated with Te with the use of accurate distribution functions at localized positions within striated helium discharges at 500 mTorr, 750 mTorr, and 1 Torr. To our knowledge, these are the first spatiotemporal, laser-based, experimental measurements of ne in DC striations. The ne and 447:588 ratio distributions align closely with striation theory. Constriction of the positive column appears to occur with decreased gas pressure, as shown by the radial ne distribution. We identify a transition from a slow ionization wave to a fast ionization wave between 750 mTorr and 1 Torr. These experiments validate our analytic fit of ne, allowing the implementation of an LCIF diagnostic in helium without the need to develop a CRM.

More Details

Two-well injector direct-phonon terahertz quantum cascade lasers

Applied Physics Letters

Lander Gower, Nathalie; Levy, Shiran; Piperno, Silvia; Addamane, Sadhvikas J.; Reno, John L.; Albo, Asaf

We present an experimental study on a terahertz quantum cascade laser (THz QCL) design that combines both two-well injector and direct-phonon scattering schemes, i.e., a so-called two-well injector direct-phonon design. As a result of the two-well injector direct-phonon scheme presented here, the lasers benefit from both a direct phonon scattering scheme for the lower laser level depopulation and a setback for the doping profile that reduces the overlap of the doped region with active laser states. Additionally, our design also has efficient isolation of the active laser levels from excited and continuum states as indicated by negative differential resistance behavior all the way up to room temperature. This scheme serves as a good platform for improving the temperature performance of THz QCLs as indicated by the encouraging temperature performance results of the device with a relatively high doping level of 7.56 × 1010 cm−2 and Tmax ∼ 167 K. With the right optimization of the molecular beam epitaxy growth and interface quality, the injection coupling strength, and the doping density and its profile, the device could potentially reach higher temperatures than the latest records reached for the maximum operating temperature (Tmax) of THz QCLs.

More Details

Spectral localizer for line-gapped non-Hermitian systems

Journal of Mathematical Physics

Cerjan, Alexander; Koekenbier, Lars; Schulz-Baldes, Hermann

Short-ranged and line-gapped non-Hermitian Hamiltonians have strong topological invariants given by an index of an associated Fredholm operator. It is shown how these invariants can be accessed via the signature of a suitable spectral localizer. Here, this numerical technique is implemented in an example with relevance to the design of topological photonic systems, such as topological lasers.

More Details

Synthesis and Structural Study of Substituted Ternary Nitrides for Ammonia Production

Chemistry of Materials

Gao, Xiang; Bush, Hagan E.; E Miller, James; Ermanoski, Ivan; Ambrosini, Andrea A.; Stechel, Ellen B.

Over the past few decades, inorganic nitride materials have grown in importance in part due to their potential as catalysts for the synthesis of NH3, a key ingredient in fertilizer and precursor to industrial chemicals. Of particular interest are the ternary (ABN) or higher-order nitrides with high metal-to-nitrogen ratios that show promise in enhancing NH3 synthesis reaction rates and yields via heterogeneous catalysis or chemical looping. Although metal nitrides are predicted to be numerous, the stability of nitrogen triple bonds found in N2, especially in comparison to the metal-nitrogen bonds, has considerably hindered synthetic efforts to produce complex nitride compounds. In this study, we present an exhaustive down-selection process to identify ternary nitrides for a promising chemical looping NH3 production mechanism. We also report on a facile and efficient two-step synthesis method that can produce well-characterized η-carbide Co3Mo3N/Fe3Mo3N or filled β-manganese Ni2Mo3N ternaries, as well as their associated quaternary, (Co,Fe)3Mo3N, (Fe,Ni)2Mo3N, and (Co,Ni)2Mo3N, solid solutions. To further explore the quaternary space, syntheses of (Co,Ni)3Mo3N (Ni ≤ 10 mol %) and Co3(Mo,W)3N (W ≤ 10 mol %) were also investigated. The structures of the nitrides were characterized via X-ray powder diffraction. The morphology and compositions were characterized with scanning electron microscopy. The multitude of chemically unique, but structurally related, nitrides suggests that properties such as nitrogen activity may be tunable, making the materials of great interest for NH3 synthesis schemes.

More Details

CODAS Data from Oliktok Point, Beaufort Sea, Alaska

Baker, Michael G.; Abbott, Robert

Cryosphere/Ocean Distributed Acoustic Sensing (CODAS) data collected from the Beaufort Sea, Alaska, using ~37.4 km of dark telecommunications fiber located at Oliktok Point, Alaska. Data were collected with a Silixa iDAS, using 10 m gauge length, 2 m spatial resolution, and 1000 Hz sample rate. Provided here are the DAS-recorded time series for the rapid refreeze event described in Baker & Abbott (2022) (see link below). This covers a date range of 2021-11-10 15:00 UTC to 2021-11-11 17:00 UTC. Data have been decimated to 100 Hz and 20 m (i.e., every 10th channel for 1831 channels, total), as used in Baker & Abbott (2022). Data have been extracted from raw format into 1-hour long .sac* files and organized into directories by channel number, spanning channels 100 to 18400. Time series units are nano-strainrate (nm/m/s). For distribution, data have been compressed into .zip files containing all time series files for 100 channels. *For information on the Seismic Analysis Code (SAC) file format: https://seiscode.iris.washington.edu/projects/sac

More Details

Measuring Thread Timing to Assess the Feasibility of Early-bird Message Delivery

ACM International Conference Proceeding Series

Marts, William P.; Dosanjh, Matthew G.; Schonbein, William W.; Levy, Scott L.N.; Bridges, Patrick G.

Early-bird communication is a communication/computation overlap technique that combines fine-grained communication with partitioned communication to improve application run-time. Communication is divided among the compute threads such that each individual thread can initiate transmission of its portion of the data as soon as it is complete rather than waiting for all of the threads. However, the benefit of early-bird communication depends on the completion timing of the individual threads. In this paper, we measure and evaluate the potential overlap, the idle time each thread experiences between finishing their computation and the final thread finishing. These measurements help us understand whether a given application could benefit from early-bird communication. We present our technique for gathering this data and evaluate data collected from three proxy applications: MiniFE, MiniMD, and MiniQMC. To characterize the behavior of these workloads, we study the thread timings at both a macro level, i.e., across all threads across all runs of an application, and a micro level, i.e., within a single process of a single run. We observe that these applications exhibit significantly different behavior. While MiniFE and MiniQMC appear to be well-suited for early-bird communication because of their wider thread distribution and more frequent laggard threads, the behavior of MiniMD may limit its ability to leverage early-bird communication.

More Details

Modeling and Benchmarking the Potential Benefit of Early-Bird Transmission in Fine-Grained Communication

ACM International Conference Proceeding Series

Schonbein, William W.; Levy, Scott L.N.; Dosanjh, Matthew G.; Marts, William P.; Reid, Elizabeth; Grant, Ryan E.

Traditional point-to-point communication sends data only after the entirety of the data is available. This includes situations where multiple actors (e.g., threads) contribute to the send buffer. As a result, cases where the completion times of these actors are widely distributed may be lost opportunities for optimization because data ready to be sent is waiting to be transmitted. Fine-grained communication exposes these opportunities by allowing buffers to be divided into elements that can then be sent independently (see e.g., Partitioned Communication in Message Passing Interface v4.0). While some research has been directed at exploring the utility of such 'early-bird' transmission, the overall search space for finding the best performing actor completion timings and element counts is large. In this work, we present an abstract model of fine-grained communication based on the LogGP model and a complementary benchmark. We use the model to explore actor completion timing scenarios and identify trends in communication behavior based on factors such as overall message size and delay between actor completions. We evaluate the benchmarks on three systems utilizing distinct network technologies and show that: (i) smaller numbers of elements are able to exploit most of the benefit of early-bird communication, (ii) performance benefit will depend non-trivially on application behavior, and (iii) benefits are highly network-dependent.

More Details

Thermomechanical Modeling of Copper

Eberman, Cate

The plastic deformation of metals is a dissipative process. Some fraction of the plastic work is converted to heat which, given the temperature dependent response of metals, produces a thermal-mechanical coupling. In various cases, for instance when the loading is dynamic, this interaction can impact the resulting response of a material and/or system. Thus, appropriately capturing the heat generation from plastic work is necessary for various solid mechanics analysis. Determination of the fraction of work converted to heat has been long studied. Recent developments have demonstrated that the fraction is not constant but depends on various state variables. Resolving these features requires combined modeling and experimental studies. To this end, 304L stainless steel – a poor thermal conductor – was recently subjected to such an investigation. Advanced modeling capabilities were deployed to assess novel thermomechanically coupled experiments. As a complement to that study, in the current work a similar investigation is performed on copper – a good thermal conductor – to assess performance on the opposite end of the spectrum. The current document discusses these modeling efforts.

More Details

Molecular Cage Reports on Its Contents: Spectroscopic Signatures of Cryo-Cooled K+- and Ba2+-Benzocryptand Complexes

Journal of Physical Chemistry A

Foley, Casey D.; Allen, Cole D.; Au, Kendrew; Lee, Chin; Rempe, Susan; Ren, Pengyu; Sibert, Edwin L.; Zwier, Timothy S.

UV photofragment spectroscopy and IR-UV double resonance methods are used to determine the structure and spectroscopic responses of a three-dimensional [2.2.2]-benzocryptand cage to the incorporation of a single K+ or Ba2+ imbedded inside it (labeled as K+-BzCrypt, Ba2+-BzCrypt). We studied the isolated ion-cryptand complex under cryo-cooled conditions, brought into the gas phase by nano-electrospray ionization. Incorporation of a phenyl ring in place of the central ethyl group in one of the three N-CH2-CH2-O-CH2-CH2-O-CH2-CH2-N chains provides a UV chromophore whose S0-S1 transition we probe. K+-BzCrypt and Ba2+-BzCrypt have their S0-S1 origin transitions at 35,925 and 36,446 cm-1, respectively, blue-shifted by 174 and 695 cm-1 from that of 1,2-dimethoxybenzene. These origins are used to excite a single conformation of each complex selectively and record their IR spectra using IR-UV dip spectroscopy. The alkyl CH stretch region (2800-3000 cm-1) is surprisingly sensitive to the presence and nature of the encapsulated ion. We carried out an exhaustive conformational search of cage conformations for K+-BzCrypt and Ba2+-BzCrypt, identifying two conformations (A and B) that lie below all others in energy. We extend our local mode anharmonic model of the CH stretch region to these strongly bound ion-cage complexes to predict conformation-specific alkyl CH stretch spectra, obtaining quantitative agreement with experiment for conformer A, the gas-phase global minimum. The large electrostatic effect of the charge on the O- and N-lone pairs affects the local mode frequencies of the CH2 groups adjacent to these atoms. The localized CH2 scissors modes are pushed up in frequency by the adjacent O/N-atoms so that their overtones have little effect on the alkyl CH stretch region. However, the localized CH2 wags are nearly degenerate and strongly coupled to one another, producing an array of delocalized wag normal modes, whose highest frequency members reach up above 1400 cm-1. As such, their overtones mix significantly with the CH stretch modes, most notably involving the CH2 symmetric stretch fundamentals of the central ethyl groups in the all-alkyl chains and the CH stretches adjacent to the N-atoms and antiperiplanar to the nitrogen lone pair.

More Details

Near-Field Spectroscopy of Individual Asymmetric Split-Ring Terahertz Resonators

ACS Photonics

Lu, Yuezhen; Hale, Lucy L.; Zaman, Abdullah M.; Addamane, Sadhvikas J.; Brener, Igal; Mitrofanov, Oleg; Innocenti, Riccardo'

Metamaterial resonators have become an efficient and versatile platform in the terahertz frequency range, finding applications in integrated optical devices, such as active modulators and detectors, and in fundamental research, e.g., ultrastrong light–matter investigations. Despite their growing use, characterization of modes supported by these subwavelength elements has proven to be challenging and it still relies on indirect observation of the collective far-field transmission/reflection properties of resonator arrays. Here, we present a broadband time-domain spectroscopic investigation of individual metamaterial resonators via a THz aperture scanning near-field microscope (a-SNOM). The time-domain a-SNOM allows the mapping and quantitative analysis of strongly confined modes supported by the resonators. In particular, a cross-polarized configuration presented here allows an investigation of weakly radiative modes. These results hold great potential to advance future metamaterial-based optoelectronic platforms for fundamental research in THz photonics.

More Details

Enhanced microbial production of protocatechuate from engineered sorghum using an integrated feedstock-to-product conversion technology

Green Chemistry

Garcia, Valentina; Pidatala, Venkataramana; Barcelos, Carolina A.; Liu, Dupeng; Otoupal, Peter; Wendt, Oliver; Choudhary, Hemant; Sun, Ning; Eudes, Aymerick; Sundstrom, Eric R.; Scheller, Henrik V.; Putnam, Daniel H.; Mukhopadhyay, Aindrila; Gladden, John M.; Simmons, Blake A.; Rodriguez, Alberto

Building a stronger bioeconomy requires production capabilities that are largely generated through microbial genetic engineering. Plant feedstocks can additionally be genetically engineered to generate desirable feedstock traits and provide precursors for direct microbial conversion into desired products. The oleaginous yeast Rhodosporidium toruloides is a promising organism for this type of conversion as it can grow on a wide range of deconstructed biomass and consume a variety of carbon sources. Here, we leveraged R. toruloides native p-coumaric acid consumption pathway to accumulate protocatechuate (PCA) from 4-hydroxybenzoate (4HBA) released from a sorghum feedstock line genetically engineered to overproduce 4HBA. We did so by generating and evaluating an R. toruloides strain that accumulates PCA, RSΔ12623. We then show that at two scales a cholinium lysinate pretreatment with enzymatic saccharification successfully extracts 95% of the 4HBA from the engineered sorghum biomass while producing deconstructed lignin that can be more efficiently depolymerized in a subsequent thermochemical reaction. We also demonstrate that strain RSΔ12623 can convert more than 95% of 4HBA to PCA while consuming >95% of the glucose and >80% of the xylose present in sorghum hydrolysates. Finally, to evaluate the scalability of such fermentations, we conducted the conversion of 4HBA to PCA in a 2 L bioreactor under controlled conditions. This work demonstrates the potential of purposefully producing aromatic precursors in planta that can be liberated during biomass deconstruction for direct microbial conversion to desirable bioproducts.

More Details

Dendritic Computation for Neuromorphic Applications

ACM International Conference Proceeding Series

Cardwell, Suma G.; Chance, Frances S.

In this paper, we highlight how computational properties of biological dendrites can be leveraged for neuromorphic applications. Specifically, we demonstrate analog silicon dendrites that support multiplication mediated by conductance-based input in an interception model inspired by the biological dragonfly. We also demonstrate spatiotemporal pattern recognition and direction selectivity using dendrites on the Loihi neuromorphic platform. These dendritic circuits can be assembled hierarchically as building blocks for classifying complex spatiotemporal patterns.

More Details

M4 Summary of EBS International Activity

Hadgu, Teklu; Matteo, Edward N.

Thermal-Hydrologic (TH) modeling of DECOVALEX 2023, Task C has continued in FY23. This report summarizes progress in TH modeling of Step 1c, with calibration modeling and the addition of shotcrete. The work involves 3-D modeling of the full-scale emplacement experiment at the Mont Terri Underground Rock Laboratory (Nagra, 2019). While Step 1 is focused on modeling the heating phase of the FE experiment with changes in pore pressure in the Opalinus clay resulting from heating, Step 1c is focused on calibration of models using available data.

More Details

2.5D HI Packaging of the Power Converter using TSV interposer

Chung, Hyunim; Young, Andrew I.; Klein, Brianna A.; Mcdonough, Matthew; Neely, Jason C.

Abstract: Advantages of the 2.5D HI (Heterogeneous Integration) electronics packaging of the power electronics compared to PCB packaging will be presented. Current 2.5D packaging effort using TSV (Through Silicon Via) will be presented in terms of fabrication, microstructural analysis, reliability, and thermal simulation.

More Details

Introduction to the Special Section on Seismoacoustics and Seismoacoustic Data Fusion

Bulletin of the Seismological Society of America

Dannemann Dugick, Fransiska K.; Bishop, Jordan W.; Martire, Leo; Iezzi, Alexandra M.; Assink, Jelle D.; Brissaud, Quentin; Arrowsmith, Stephen

This special section of the Bulletin of the Seismological Society of America provides a broad overview on recent advances to the understanding of the seismoacoustic wavefield through 19 articles. Leveraging multiphenomenology datasets is instrumental for the continued success of future planetary missions, nuclear test ban treaty verification, and natural hazard monitoring. Progress in our theoretical understanding of mechanical coupling, advancements in coupled-media wave modeling, and developments of efficient multitechnology inversion procedures are key to fully exploiting geophysical datasets on Earth and beyond. We begin by highlighting papers describing experimental setups and instrumentation, followed by characterization of natural and anthropogenic sources of interest, and ending in new open-access datasets. Finally, we conclude with an overview of challenges that remain as well as some potential directions for future investigation within the growing multidisciplinary field of seismoacoustics.

More Details

Developing a Facility NMAC Plan

Williams, Martha C.; Pope, Noah G.

The table presented below suggests the basic information that should be covered in a facility NMAC Plan for an NMAC program that is designed for nuclear security. The topics are appropriate for and should be addressed by all facilities in their NMAC Plans. They are appropriate for NMAC Plans for nuclear power plants, research reactors, fuel manufacturing facilities, facilities that produce medical isotopes, and other facilities. The difference is in the intensity with which the various measures are applied and the thoroughness of the description of the application (i.e., the program requirements). The robustness of a facility NMAC program and the content of its NMAC Plan should be graded in accordance with the type of facility and the category of its nuclear material.

More Details

Molecular dynamics exploration of helium bubble nucleation and growth mechanisms in Fe70Ni11Cr19 austenitic stainless steel

RSC Advances

Zhou, Xiaowang

The growth of helium bubbles impacts structural integrity of materials in nuclear applications. Understanding helium bubble nucleation and growth mechanisms is critical for improved material applications and aging predictions. Systematic molecular dynamics simulations have been performed to study helium bubble nucleation and growth mechanisms in Fe70Ni11Cr19 stainless steels. First, helium cluster diffusivities are calculated at a variety of helium cluster sizes and temperatures for systems with and without dislocations. Second, the process of diffusion of helium atoms to join existing helium bubbles is not deterministic and is hence studied using ensemble simulations for systems with and without vacancies, interstitials, and dislocations. We find that bubble nucleation depends on diffusion of not only single helium atoms, but also small helium clusters. Defects such as vacancies and dislocations can significantly impact the diffusion kinetics due to the trapping effects. Vacancies always increase the time for helium atoms to join existing bubbles due to the short-range trapping effect. This promotes bubble nucleation as opposed to bubble growth. Interestingly, dislocations can create a long-range trapping effect that reduces the time for helium atoms to join existing bubbles. This can promote bubble growth within a certain region near dislocations.

More Details
Results 1801–2000 of 99,299
Results 1801–2000 of 99,299