Publications

Results 1–25 of 357

Search results

Jump to search filters

Enhanced pozzolanic reactivity in hydrogen-form zeolites as supplementary cementitious materials

Cement and Concrete Composites

Rimsza, Jessica; Rademacher, David X.; Nenoff, Tina M.; Tuinukuafe, Atolo A.

Pozzolans rich in silica and alumina react with lime to form cementing compounds and are incorporated into portland cement as supplementary cementitious materials (SCMs). However, pozzolanic reactions progress slower than portland cement hydration, limiting their use in modern construction due to insufficient early-age strength. Hence, alternative SCMs that enable faster pozzolanic reactions are necessary including synthetic zeolites, which have high surface areas and compositional purity that indicate the possibility of rapid pozzolanic reactivity. Synthetic zeolites with varying cation composition (Na-zeolite, H-zeolite), SiO2/Al2O3 ratio, and framework type were evaluated for pozzolanic reactivity via Ca(OH)2 consumption using ion exchange and in-situ X-ray diffraction experiments. Na-zeolites exhibited limited exchange reactions with KOH and Ca(OH)2 due to the occupancy of acid sites by Na+ and hydroxyl groups. Meanwhile, H-zeolites readily adsorbed K+ and Ca2+ from a hydroxide solution by exchanging cations with H+ at Brønsted acid sites or cation adsorption at vacant acid sites. By adsorbing cations, the H-zeolite reduced the pH and increased Ca2+ solubility to promote pozzolanic reactions in a system where Ca(OH)2 dissolution/diffusion was a rate limiting factor. High H-zeolite reactivity resulted in 0.8 g of Ca(OH)2 consumed per 1 g of zeolites after 16 h of reaction versus 0.4 g of Ca(OH)2 consumed per 1 g of Na-zeolite. The H-zeolite modulated the pore fluid alkalinity and created a low-density amorphous silicate phase via mechanisms analogous to two-step C-S-H nucleation experiments. Controlling these reaction mechanisms is key to developing next generation pozzolanic cementitious systems with comparable hydration rates to portland cement.

More Details

Critical role of solvation on CC13 porous organic cages for design of porous liquids

Journal of Molecular Liquids

Rimsza, Jessica; Nenoff, Tina M.

Efficient carbon capture requires the design of new materials with high CO2 selectivity and gas adsorption capacity that can be incorporated into existing industrial processes. Porous liquids (PLs) are promising candidate materials that consist of a nanoporous host and a solvent forming a liquid with permanent porosity based on exclusion of the solvent from the interior of the nanoporous host. Stable PLs are based on solvent-nanoporous host interactions, which can be evaluated through molecular simulations. Here, time- and temperature-dependent density functional theory simulations were performed between four solvents, 2-bromophenol, 4-methylphenol, 2,4-dimethylphenol, and cyclohexanone and the CC13 porous organic cage (POC) as a prototypical PL composition. Overall, minimal reactions occurred in the PL including no changes in the POC structure. Additionally, POC-solvent coordination occurred through interactions of neighboring functional groups such as methyl/bromide and hydroxyl on the solvent molecules with the POC surface. Therefore, the location rather than the number of functional groups on the solvent molecule controls the POC-solvent interactions. Additionally, the POC pore window contracted or expanded up to 8% during solvation, which correlates with the experimental solubility and static solvent-POC binding, where solvents that caused less contraction of the POC pore window increased POC solubility. These results allow for the design of optimized POC-based PL compositions based on solvent-nanoporous host binding and variation in the pore window during solvation.

More Details

Design Principles Guiding Solvent Size Selection in ZIF-Based Type 3 Porous Liquids for Permanent Porosity

ACS Materials Au

Hurlock, Matthew; Christian, Matthew S.; Rimsza, Jessica; Nenoff, Tina M.

Porous liquids (PLs), which are solvent-based systems that contain permanent porosity due to the incorporation of a solid porous host, are of significant interest for the capture of greenhouse gases, including CO2. Type 3 PLs formed by using metal-organic frameworks (MOFs) as the nanoporous host provide a high degree of chemical turnability for gas capture. However, pore aperture fluctuation, such as gate-opening in zeolitic imidazole framework (ZIF) MOFs, complicates the ability to keep the MOF pores available for gas adsorption. Therefore, an understanding of the solvent molecular size required to ensure exclusion from MOFs in ZIF-based Type 3 PLs is needed. Through a combined computational and experimental approach, the solvent-pore accessibility of exemplar MOF ZIF-8 was examined. Density functional theory (DFT) calculations identified that the lowest-energy solvent-ZIF interaction occurred at the pore aperture. Experimental density measurements of ZIF-8 dispersed in various-sized solvents showed that ZIF-8 adsorbed solvent molecules up to 2 Å larger than the crystallographic pore aperture. Density analysis of ZIF dispersions was further applied to a series of possible ZIF-based PLs, including ZIF-67, −69, −71(RHO), and −71(SOD), to examine the structure-property relationships governing solvent exclusion, which identified eight new ZIF-based Type 3 PL compositions. Solvent exclusion was driven by pore aperture expansion across all ZIFs, and the degree of expansion, as well as water exclusion, was influenced by ligand functionalization. Using these results, a design principle was formulated to guide the formation of future ZIF-based Type 3 PLs that ensures solvent-free pores and availability for gas adsorption.

More Details

CO2 adsorption mechanisms at the ZIF-8 interface in a Type 3 porous liquid

Journal of Molecular Liquids

Rimsza, Jessica; Hurlock, Matthew; Nenoff, Tina M.; Christian, Matthew S.

Porous liquids (PLs) are an attractive material for gas separation and carbon sequestration due to their permanent internal porosity and high adsorption capacity. PLs that contain zeolitic imidazole frameworks (ZIFs), such as ZIF-8, form PLs through exclusion of aqueous solvents from the framework pore due to its hydrophobicity. The gas adsorption sites in ZIF-8 based PLs are historically unknown; gas molecules could be captured in the ZIF-8 pore or adsorb at the ZIF-8 interface. To address this question, ab initio molecular dynamics was used to predict CO2 binding sites in a PL composed of a ZIF-8 particle solvated in a water, ethylene glycol, and 2-methylimidazole solvent system. Further, the results show that CO2 energetically prefers to reside inside the ZIF-8 pore aperture due to strong van der Waals interactions with the terminal imidazoles. However, the CO2 binding site can be blocked by larger solvent molecules that have greater adsorption interactions. CO2 molecules were unable to diffuse into the ZIF-8 pore, with CO2 adsorption occurring due to binding with the ZIF-8 surface. Therefore, future design of ZIF-based PLs for enhanced CO2 adsorption should be based on the strength of gas binding at the solvated particle surface.

More Details

Impedance-Based Detection of NO2 Using Ni-MOF-74: Influence of Competitive Gas Adsorption

ACS Applied Materials and Interfaces

Small, Leo J.; Vornholt, Simon M.; Percival, Stephen J.; Foulk, James W.; Schindelholz, Mara E.; Chapman, Karena W.; Nenoff, Tina M.

Chemically robust, low-power sensors are needed for the direct electrical detection of toxic gases. Metal-organic frameworks (MOFs) offer exceptional chemical and structural tunability to meet this challenge, though further understanding is needed regarding how coadsorbed gases influence or interfere with the electrical response. To probe the influence of competitive gases on trace NO2 detection in a simulated flue gas stream, a combined structure-property study integrating synchrotron powder diffraction and pair distribution function analyses was undertaken, to elucidate how structural changes associated with gas binding inside Ni-MOF-74 pores correlate with the electrical response from Ni-MOF-74-based sensors. Data were evaluated for 16 gas combinations of N2, NO2, SO2, CO2, and H2O at 50 °C. Fourier difference maps from a rigid-body Rietveld analysis showed that additional electron density localized around the Ni-MOF-74 lattice correlated with large decreases in Ni-MOF-74 film resistance of up to a factor of 6 × 103, observed only when NO2 was present. These changes in resistance were significantly amplified by the presence of competing gases, except for CO2. Without NO2, H2O rapidly (<120 s) produced small (1-3×) decreases in resistance, though this effect could be differentiated from the slower adsorption of NO2 by the evaluation of the MOF’s capacitance. Furthermore, samples exposed to H2O displayed a significant shift in lattice parameters toward a larger lattice and more diffuse charge density in the MOF pore. Evaluating the Ni-MOF-74 impedance in real time, NO2 adsorption was associated with two electrically distinct processes, the faster of which was inhibited by competitive adsorption of CO2. Together, this work points to the unique interaction of NO2 and other specific gases (e.g., H2O, SO2) with the MOF’s surface, leading to orders of magnitude decrease in MOF resistance and enhanced NO2 detection. Understanding and leveraging these coadsorbed gases will further improve the gas detection properties of MOF materials.

More Details

Experimental and Computational Mechanisms that Govern Long-Term Stability of CO2-Adsorbed ZIF-8-Based Porous Liquids

ACS Applied Materials and Interfaces

Hurlock, Matthew; Nenoff, Tina M.; Rimsza, Jessica; Fritzsching, Keith; Rademacher, David X.; Christian, Matthew S.

Porous liquids (PLs) based on the zeolitic imidazole framework ZIF-8 are attractive systems for carbon capture since the hydrophobic ZIF framework can be solvated in aqueous solvent systems without porous host degradation. However, solid ZIF-8 is known to degrade when exposed to CO2 in wet environments, and therefore the long-term stability of ZIF-8-based PLs is unknown. Through aging experiments, the long-term stability of a ZIF-8 PL formed using the water, ethylene glycol, and 2-methylimidazole solvent system was systematically examined, and the mechanisms of degradation were elucidated. The PL was found to be stable for several weeks, with no ZIF framework degradation observed after aging in N2 or air. However, for PLs aged in a CO2 atmosphere, formation of a secondary phase occurred within 1 day from the degradation of the ZIF-8 framework. From the computational and structural evaluation of the effects of CO2 on the PL solvent mixture, it was identified that the basic environment of the PL caused ethylene glycol to react with CO2 forming carbonate species. These carbonate species further react within the PL to degrade ZIF-8. The mechanisms governing this process involves a multistep pathway for PL degradation and lays out a long-term evaluation strategy of PLs for carbon capture. Additionally, it clearly demonstrates the need to examine the reactivity and aging properties of all components in these complex PL systems in order to fully assess their stabilities and lifetimes.

More Details

Design of enhanced porous organic cage solubility in Type 2 porous liquids

Journal of Molecular Liquids

Rimsza, Jessica; Nenoff, Tina M.

Decreasing cost of technologies for direct air capture of carbon can be achieved through the design of new materials with high CO2 selectivity that can be incorporated into existing industrial processes. An emerging class of materials for these applications are porous liquids (PLs). PLs are mixtures of porous hosts and solvents with intrinsic porosity due to steric exclusion of solvent from inside the porous host. It is currently unknown how solvent -porous host interactions affect porous host solubility in the bulk solvent. Here, density functional theory simulations were used to investigate interactions between nine solvents and a CC13 porous organic cage (POC). Calculations identified that solvent molecules were the most stable when placed either inside the CC13 POC or in the pore window compared to interfacial binding sites. Structural changes to the CC13 POC correlated with reported experimental solubilities, including expansion of the CC13 POC with solvent molecule infiltration and expansion or contraction of the pore window. Based on these results, new PL design guidelines should include compositions with (1) high concentrations of POCs with flexible cage structures that can expand when solvated and (2) solvent molecule-POC combinations that contract the pore window during solvent molecule-host binding.

More Details

Effect of Linker Structure and Functionalization on Secondary Gas Formation in Metal-Organic Frameworks

Journal of Physical Chemistry A

Rimsza, Jessica; Nenoff, Tina M.; Christian, Matthew S.

Rare-earth terephthalic acid (BDC)-based metal-organic frameworks (MOFs) are promising candidate materials for acid gas separation and adsorption from flue gas streams. However, previous simulations have shown that acid gases (H2O, NO2, and SO2) react with the hydroxyl on the BDC linkers to form protonated acid gases as a potential degradation mechanism. Herein, gas-phase computational approaches were used to identify the formation energies of these secondary protonated acid gases across multiple BDC linker molecules. Formation energies for secondary protonated acid gases were evaluated using both density functional theory (DFT) and correlated wave function methods for varying BDC-gas reaction mechanisms. Upon validation of DFT to reproduce wave function calculation results, rotated conformational linkers and chemically functionalized BDC linkers with −OH, −NH2, and −SH were investigated. The calculations show that the rotational conformation affects the molecule stability. Double-functionalized BDC linkers, where two functional groups are substituted onto BDC, showed varied reaction energies depending on whether the functional groups donate or withdraw electrons from the aromatic system. Based on these results, BDC linker design must balance adsorption performance with degradation via linker dehydrogenation for the design of stable MOFs for acid gas separations.

More Details

Design of CO2 Selective Type 3 Porous Liquids Through Porous Host Morphology

Rimsza, Jessica; Nenoff, Tina M.; Hurlock, Matthew; Christian, Matthew S.

Direct air capture (DAC) of CO2 is a negative emission technology under development to limit the impacts of climate change. The dilute concentration of CO2 in the atmosphere (~400 ppm) requires new materials for carbon capture with increased CO2 selectivity that is not met with current carbon capture materials. Porous liquids (PLs) are an emerging candidate for carbon capture and consists of a combination of solvents and porous hosts that creates a liquid with permanent porosity. The fundamental mechanisms of carbon capture in a PL are relatively unknown. To uncover these mechanisms, PLs were synthesized consisting of three different zeolitic-imidazolate framework (ZIF-8, ZIF-67, or ZIF-69) porous host in a water/glycol/2-methylimidazole solvent. The most stable composition was based on ZIF-8 and exhibited carbon capture following exposure to CO2. Density functional theory identified a three-step carbon capture mechanism based on (i) reaction of OH- with ethylene glycol in the solution followed by (ii) formation of 2-hydroxyethyl carbonate, which (iii) further react with OH- to form a carbonate species. This mechanism was validated with experimental nuclear magnetic resonance spectroscopy (NMR) to identify the dissolved carbonate phases and the decrease in the pH during CO2 exposure. Deuterated samples of the ZIF-8 PLs were synthesized and analyzed via neutron diffraction at the Spallation Neutron Sources at Oak Ridge National Laboratory. Results identified differences in diffraction for PLs pre- and post-CO2 exposure that will be combined with ab initio molecular dynamics data of the same PL composition to identify how the presence of a solvent-porous host interfaces results in carbon capture.

More Details
Results 1–25 of 357
Results 1–25 of 357