Publications

10 Results

Search results

Jump to search filters

ALEGRA: Finite element modeling for shock hydrodynamics and multiphysics

International Journal of Impact Engineering

Niederhaus, John H.; Bova, S.W.; Carleton, James B.; Carpenter, John H.; Cochrane, Kyle C.; Crockatt, Michael M.; Dong, Wen D.; Fuller, Timothy J.; Granzow, Brian N.; Ibanez-Granados, Daniel A.; Kennon, Stephen; Luchini, Christopher B.; Moral, Ramon; O'Brien, Christopher J.; Powell, Michael P.; Robinson, Allen C.; Rodriguez, Angel E.; Sanchez, Jason J.; Scott, Walter A.; Siefert, Christopher S.; Stagg, Alan K.; Kalashnikova, Irina; Voth, Thomas E.; Wilkes, John

ALEGRA is a multiphysics finite-element shock hydrodynamics code, under development at Sandia National Laboratories since 1990. Fully coupled multiphysics capabilities include transient magnetics, magnetohydrodynamics, electromechanics, and radiation transport. Importantly, ALEGRA is used to study hypervelocity impact, pulsed power devices, and radiation effects. The breadth of physics represented in ALEGRA is outlined here, along with simulated results for a selected hypervelocity impact experiment.

More Details

ALEGRA: finite element modeling for shock hydrodynamics and multiphysics

Niederhaus, John H.; Powell, Michael P.; Bova, S.W.; Carleton, James B.; Carpenter, John H.; Cochrane, Kyle C.; Crockatt, Michael M.; Dong, Wen D.; Fuller, Timothy J.; Granzow, Brian N.; Ibanez-Granados, Daniel A.; Kennon, Stephen; Luchini, Christopher B.; Moral, Ramon; O'Brien, Christopher J.; Robinson, Allen C.; Rodriguez, Angel E.; Sanchez, Jason J.; Scott, Walter A.; Siefert, Christopher S.; Stagg, Alan K.; Kalashnikova, Irina; Voth, Thomas E.

Abstract not provided.

Summer Proceedings 2019

Parks, Michael L.; Powell, Michael P.

The Computer Science Research Institute (CSRI) brings university faculty and students to Sandia for focused collaborative research on Department of Energy (DOE) computer and computational science problems. The institute provides an opportunity for university researchers to learn about problems in computer and computational science at DOE laboratories. Participants conduct leading-edge research, interact with scientists and engineers at the laboratories, and help transfer results of their research to programs at the labs. Some specific CSRI research interest areas are: scalable solvers, optimization, adaptivity and mesh refinement, graph-based, discrete, and combinatorial algorithms, uncertainty estimation, mesh generation, dynamic load-balancing, virus and other malicious-code defense, visualization, scalable cluster computers and heterogeneous computers, data-intensive computing, environments for scalable computing, parallel input/output, advanced architectures, and theoretical computer science. The CSRI Summer Program includes the organization of a weekly seminar series and the publication of this summer proceedings.

More Details
10 Results
10 Results