A variational phase field model for dynamic ductile fracture is presented. The model is designed for elasto-viscoplastic materials subjected to rapid deformations in which the effects of heat generation and material softening are dominant. The variational framework allows for the consistent inclusion of plastic dissipation in the heat equation as well as thermal softening. It employs a coalescence function to degrade fracture energy during regimes of high plastic flow. A variationally consistent form of the Johnson–Cook model is developed for use with the framework. Results from various benchmark problems in dynamic ductile fracture are presented to demonstrate capabilities. In particular, the ability of the model to regularize shear band formation and subsequent damage evolution in two- and three-dimensional problems is demonstrated. Importantly, these phenomena are naturally captured through the underlying physics without the need for phenomenological criteria such as stability thresholds for the onset of shear band formation.
We present a machine-learning strategy for finite element analysis of solid mechanics wherein we replace complex portions of a computational domain with a data-driven surrogate. In the proposed strategy, we decompose a computational domain into an “outer” coarse-scale domain that we resolve using a finite element method (FEM) and an “inner” fine-scale domain. We then develop a machine-learned (ML) model for the impact of the inner domain on the outer domain. In essence, for solid mechanics, our machine-learned surrogate performs static condensation of the inner domain degrees of freedom. This is achieved by learning the map from displacements on the inner-outer domain interface boundary to forces contributed by the inner domain to the outer domain on the same interface boundary. We consider two such mappings, one that directly maps from displacements to forces without constraints, and one that maps from displacements to forces by virtue of learning a symmetric positive semi-definite (SPSD) stiffness matrix. We demonstrate, in a simplified setting, that learning an SPSD stiffness matrix results in a coarse-scale problem that is well-posed with a unique solution. We present numerical experiments on several exemplars, ranging from finite deformations of a cube to finite deformations with contact of a fastener-bushing geometry. We demonstrate that enforcing an SPSD stiffness matrix drastically improves the robustness and accuracy of FEM–ML coupled simulations, and that the resulting methods can accurately characterize out-of-sample loading configurations with significant speedups over the standard FEM simulations.
The tension between accuracy and computational cost is a common thread throughout computational simulation. One such example arises in the modeling of mechanical joints. Joints are typically confined to a physically small domain and yet are computationally expensive to model with a high-resolution finite element representation. A common approach is to substitute reduced-order models that can capture important aspects of the joint response and enable the use of more computationally efficient techniques overall. Unfortunately, such reduced-order models are often difficult to use, error prone, and have a narrow range of application. In contrast, we propose a new type of reduced-order model, leveraging machine learning, that would be both user-friendly and extensible to a wide range of applications.
Presented in this document are tests that exist in the Sierra/SolidMechanics example problem suite, which is a subset of the Sierra/SM regression and performance test suite. These examples showcase common and advanced code capabilities. A wide variety of other regression and verification tests exist in the Sierra/SM test suite that are not included in this manual.
Presented in this document is a small portion of the tests that exist in the Sierra/SolidMechanics (Sierra/SM) verification test suite. Most of these tests are run nightly with the Sierra/SM code suite, and the results of the test are checked versus the correct analytical result. For each of the tests presented in this document, the test setup, a description of the analytic solution, and comparison of the Sierra/SM code results to the analytic solution is provided. Mesh convergence is also checked on a nightly basis for several of these tests. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems. Additional example problems are provided in the Sierra/SM Example Problems Manual. Note, many other verification tests exist in the Sierra/SM test suite, but have not yet been included in this manual.
Presented in this document are tests that exist in the Sierra/SolidMechanics example problem suite, which is a subset of the Sierra/SM regression and performance test suite. These examples showcase common and advanced code capabilities. A wide variety of other regression and verification tests exist in the Sierra/SM test suite that are not included in this manual.
Presented in this document is a small portion of the tests that exist in the Sierra/SolidMechanics (Sierra/SM) verification test suite. Most of these tests are run nightly with the Sierra/SM code suite, and the results of the test are checked versus the correct analytical result. For each of the tests presented in this document, the test setup, a description of the analytic solution, and comparison of the Sierra/SM code results to the analytic solution is provided. Mesh convergence is also checked on a nightly basis for several of these tests. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems. Additional example problems are provided in the Sierra/SM Example Problems Manual. Note, many other verification tests exist in the Sierra/SM test suite, but have not yet been included in this manual.
Sierra/SolidMechanics (Sierra/SM) is a Lagrangian, three-dimensional code for finite element analysis of solids and structures. It provides capabilities for explicit dynamic, implicit quasistatic and dynamic analyses. The explicit dynamics capabilities allow for the efficient and robust solution of models with extensive contact subjected to large, suddenly applied loads. For implicit problems, Sierra/SM uses a multi-level iterative solver, which enables it to effectively solve problems with large deformations, nonlinear material behavior, and contact. Sierra/SM has a versatile library of continuum and structural elements, and a large library of material models. The code is written for parallel computing environments enabling scalable solutions of extremely large problems for both implicit and explicit analyses. It is built on the SIERRA Framework, which facilitates coupling with other SIERRA mechanics codes. This document describes the functionality and input syntax for Sierra/SM.
Presented in this document are tests that exist in the Sierra/SolidMechanics example problem suite, which is a subset of the Sierra/SM regression and performance test suite. These examples showcase common and advanced code capabilities. A wide variety of other regression and verification tests exist in the Sierra/SM test suite that are not included in this manual.
This user’s guide documents capabilities in Sierra/SolidMechanics which remain “in-development” and thus are not tested and hardened to the standards of capabilities listed in Sierra/SM 5.16 User’s Guide. Capabilities documented herein are available in Sierra/SM for experimental use only until their official release. These capabilities include, but are not limited to, novel discretization approaches such as the conforming reproducing kernel (CRK) method, numerical fracture and failure modeling aids such as the extended finite element method (XFEM) and J-integral, explicit time step control techniques, dynamic mesh rebalancing, as well as a variety of new material models and finite element formulations.
Presented in this document are the theoretical aspects of capabilities contained in the Sierra/SM code. This manuscript serves as an ideal starting point for understanding the theoretical foundations of the code. For a comprehensive study of these capabilities, the reader is encouraged to explore the many references to scientific articles and textbooks contained in this manual. It is important to point out that some capabilities are still in development and may not be presented in this document. Further updates to this manuscript will be made as these capabilities come closer to production level.
Presented in this document is a small portion of the tests that exist in the Sierra/SolidMechanics (Sierra/SM) verification test suite. Most of these tests are run nightly with the Sierra/SM code suite, and the results of the test are checked versus the correct analytical result. For each of the tests presented in this document, the test setup, a description of the analytic solution, and comparison of the Sierra/SM code results to the analytic solution is provided. Mesh convergence is also checked on a nightly basis for several of these tests. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems. Additional example problems are provided in the Sierra/SM Example Problems Manual. Note, many other verification tests exist in the Sierra/SM test suite, but have not yet been included in this manual.
Presented in this document are tests that exist in the Sierra / SolidMechanics example problem suite, which is a subset of the Sierra / SM regression and performance test suite. These examples showcase common and advanced code capabilities. A wide variety of other regression and verification tests exist in the Sierra / SM test suite that are not included in this manual.
This user’s guide documents capabilities in Sierra/SolidMechanics which remain “in-development” and thus are not tested and hardened to the standards of capabilities listed in Sierra/SM 5.10 User’s Guide. Capabilities documented herein are available in Sierra/SM for experimental use only until their official release. These capabilities include, but are not limited to, novel discretization approaches such as the conforming reproducing kernel (CRK) method, numerical fracture and failure modeling aids such as the extended finite element method (XFEM) and J-integral, explicit time step control techniques, dynamic mesh rebalancing, as well as a variety of new material models and finite element formulations.
Presented in this document are the theoretical aspects of capabilities contained in the Sierra/SM code. This manuscript serves as an ideal starting point for understanding the theoretical foundations of the code. For a comprehensive study of these capabilities, the reader is encouraged to explore the many references to scientific articles and textbooks contained in this manual. It is important to point out that some capabilities are still in development and may not be presented in this document. Further updates to this manuscript will be made as these capabilities come closer to production level.
Sierra/SolidMechanics (Sierra/SM) is a Lagrangian, three-dimensional code for finite element analysis of solids and structures. It provides capabilities for explicit dynamic, implicit quasistatic and dynamic analyses. The explicit dynamics capabilities allow for the efficient and robust solution of models with extensive contact subjected to large, suddenly applied loads. For implicit problems, Sierra/SM uses a multi-level iterative solver, which enables it to effectively solve problems with large deformations, nonlinear material behavior, and contact. Sierra/SM has a versatile library of continuum and structural elements, and a large library of material models. The code is written for parallel computing environments enabling scalable solutions of extremely large problems for both implicit and explicit analyses. It is built on the SIERRA Framework, which facilitates coupling with other SIERRA mechanics codes. This document describes the functionality and input syntax for Sierra/SM.
This user’s guide documents capabilities in Sierra/SolidMechanics which remain “in-development” and thus are not tested and hardened to the standards of capabilities listed in Sierra/SM 5.8 User’s Guide. Capabilities documented herein are available in Sierra/SM for experimental use only until their official release. These capabilities include, but are not limited to, novel discretization approaches such as the conforming reproducing kernel (CRK) method, numerical fracture and failure modeling aids such as the extended finite element method (XFEM) and J-integral, explicit time step control techniques, dynamic mesh rebalancing, as well as a variety of new material models and finite element formulations.
Presented in this document are tests that exist in the Sierra/SolidMechanics example problem suite, which is a subset of the Sierra/SM regression and performance test suite. These examples showcase common and advanced code capabilities. A wide variety of other regression and verification tests exist in the Sierra/SM test suite that are not included in this manual.
Presented in this document are the theoretical aspects of capabilities contained in the Sierra/SM code. This manuscript serves as an ideal starting point for understanding the theoretical foundations of the code. For a comprehensive study of these capabilities, the reader is encouraged to explore the many references to scientific articles and textbooks contained in this manual. It is important to point out that some capabilities are still in development and may not be presented in this document. Further updates to this manuscript will be made as these capabilities come closer to production level.
Presented in this document is a small portion of the tests that exist in the Sierra/SolidMechanics (Sierra/SM) verification test suite. Most of these tests are run nightly with the Sierra/SM code suite, and the results of the test are checked versus the correct analytical result. For each of the tests presented in this document, the test setup, a description of the analytic solution, and comparison of the Sierra/SM code results to the analytic solution is provided. Mesh convergence is also checked on a nightly basis for several of these tests. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems. Additional example problems are provided in the Sierra/SM Example Problems Manual. Note, many other verification tests exist in the Sierra/SM test suite, but have not yet been included in this manual.
Sierra/SolidMechanics (Sierra/SM) is a three-dimensional solid mechanics code with a versatile element library, nonlinear material models, large deformation capabilities, and contact. It is built on the SIERRA Framework. SIERRA provides a data management framework in a parallel computing environment that allows the addition of capabilities in a modular fashion. Contact capabilities are parallel and scalable. This document provides information about the functionality in Sierra/SM and the command structure required to access this functionality in a user input file. This document is divided into chapters based primarily on functionality. For example, the command structure related to the use of various element types is grouped in one chapter; descriptions of material models are grouped in another chapter. Sierra/SM provides both explicit transient dynamics and implicit quasistatics and dynamics capabilities. Both the explicit and implicit modules are highly scalable in a parallel computing environment. In the past, the explicit and implicit capabilities were provided by two separate codes, known as Presto and Adagio, respectively. These capabilities have been consolidated into a single code. The executable is named Adagio, but it provides the full suite of solid mechanics capabilities, for both implicit and explicit. The Presto executable has been disabled as a consequence of this consolidation.
This user's guide documents capabilities in Sierra/SolidMechanics which remain "in-development" and thus are not tested and hardened to the standards of capabilities listed in Sierra/SM 5.6 User's Guide. Capabilities documented herein are available in Sierra/SM for experimental use only until their official release. These capabilities include, but are not limited to, novel discretization approaches such as the conforming reproducing kernel (CRK) method, numerical fracture and failure modeling aids such as the extended finite element method (XFEM) and J-integral, explicit time step control techniques, dynamic mesh rebalancing, as well as a variety of new material models and finite element formulations.
Presented in this document are the theoretical aspects of capabilities contained in the Sierra/SM code. This manuscript serves as an ideal starting point for understanding the theoretical foundations of the code. For a comprehensive study of these capabilities, the reader is encouraged to explore the many references to scientific articles and textbooks contained in this manual. It is important to point out that some capabilities are still in development and may not be presented in this document. Further updates to this manuscript will be made as these capabilities come closer to production level.