We propose a novel statistical inference methodology for multiway count data that is corrupted by false zeros that are indistinguishable from true zero counts. Our approach consists of zero-truncating the Poisson distribution to neglect all zero values. This simple truncated approach dispenses with the need to distinguish between true and false zero counts and reduces the amount of data to be processed. Inference is accomplished via tensor completion that imposes low-rank tensor structure on the Poisson parameter space. Our main result shows that an N-way rank-R parametric tensor M ∈ (0, ∞)I×.....×I generating Poisson observations can be accurately estimated by zero-truncated Poisson regression from approximately IR2 log22(I) non-zero counts under the nonnegative canonical polyadic decomposition. Our result also quantifies the error made by zero-truncating the Poisson distribution when the parameter is uniformly bounded from below. Therefore, under a low-rank multiparameter model, we propose an implementable approach guaranteed to achieve accurate regression in under-determined scenarios with substantial corruption by false zeros. Several numerical experiments are presented to explore the theoretical results.
In this paper, we propose a hybrid method that uses stochastic and deterministic search to compute the maximum likelihood estimator of a low-rank count tensor with Poisson loss via state-of-theart local methods. Our approach is inspired by Simulated Annealing for global optimization and allows for fine-grain parameter tuning as well as adaptive updates to algorithm parameters. We present numerical results that indicate our hybrid approach can compute better approximations to the maximum likelihood estimator with less computation than the state-of-the-art methods by themselves.
We propose a novel statistical inference paradigm for zero-inflated multiway count data that dispenses with the need to distinguish between true and false zero counts. Our approach ignores all zero entries and applies zero-truncated Poisson regression on the positive counts. Inference is accomplished via tensor completion that imposes low-rank structure on the Poisson parameter space. Our main result shows that an $\textit{N}$-way rank-R parametric tensor 𝓜 ϵ (0, ∞)$I$Χ∙∙∙Χ$I$ generating Poisson observations can be accurately estimated from approximately $IR^2 \text{log}^2_2(I)$ non-zero counts for a nonnegative canonical polyadic decomposition. Several numerical experiments are presented demonstrating that our zero-truncated paradigm is comparable to the ideal scenario where the locations of false zero counts are known $\textit{a priori}$.
We present a novel approach to information retrieval and document analysis based on graph analytic methods. Traditional information retrieval methods use a set of terms to define a query that is applied against a document corpus to identify the documents most related to those terms. In contrast, we define a query as a set of documents of interest and apply the query by computing mean hitting times between this set and all other documents on a document similarity graph abstraction of the semantic relationships between all pairs of documents. We present the steps of our approach along with a simple example application illustrating how this approach can be used to find documents related to two or more documents or topics of interest.
Both the data science and scientific computing communities are embracing GPU acceleration for their most demanding workloads. For scientific computing applications, the massive volume of code and diversity of hardware platforms at supercomputing centers has motivated a strong effort toward performance portability. This property of a program, denoting its ability to perform well on multiple architectures and varied datasets, is heavily dependent on the choice of parallel programming model and which features of the programming model are used. In this paper, we evaluate performance portability in the context of a data science workload in contrast to a scientific computing workload, evaluating the same sparse matrix kernel on both. Among our implementations of the kernel in different performance-portable programming models, we find that many struggle to consistently achieve performance improvements using the GPU compared to simple one-line OpenMP parallelization on high-end multicore CPUs. We show one that does, and its performance approaches and sometimes even matches that of vendor-provided GPU math libraries.
Poisson Tensor Factorization (PTF) is an important data analysis method for analyzing patterns and relationships in multiway count data. In this work, we consider several algorithms for computing a low-rank PTF of tensors with sparse count data values via maximum likelihood estimation. Such an approach reduces to solving a nonlinear, non-convex optimization problem, which can leverage considerable parallel computation due to the structure of the problem. However, since the maximum likelihood estimator corresponds to the global minimizer of this optimization problem, it is important to consider how effective methods are at both leveraging this inherent parallelism as well as computing a good approximation to the global minimizer. In this work we present comparisons of multiple methods for PTF that illustrate the tradeoffs in computational efficiency and accurately computing the maximum likelihood estimator. We present results using synthetic and real-world data tensors to demonstrate some of the challenges when choosing a method for a given tensor.
Poisson Tensor Factorization (PTF) is an important data analysis method for analyzing patterns and relationships in multiway count data. In this work, we consider several algorithms for computing a low-rank PTF of tensors with sparse count data values via maximum likelihood estimation. Such an approach reduces to solving a nonlinear, non-convex optimization problem, which can leverage considerable parallel computation due to the structure of the problem. However, since the maximum likelihood estimator corresponds to the global minimizer of this optimization problem, it is important to consider how effective methods are at both leveraging this inherent parallelism as well as computing a good approximation to the global minimizer. In this work we present comparisons of multiple methods for PTF that illustrate the tradeoffs in computational efficiency and accurately computing the maximum likelihood estimator. We present results using synthetic and real-world data tensors to demonstrate some of the challenges when choosing a method for a given tensor.