Metal-organic frameworks (MOFs) are a class of porous, crystalline materials that have been systematically developed for a broad range of applications. Incorporation of two or more metals into a single crystalline phase to generate heterometallic MOFs has been shown to lead to synergistic effects, in which the whole is oftentimes greater than the sum of its parts. Because geometric proximity is typically required for metals to function cooperatively, deciphering and controlling metal distributions in heterometallic MOFs is crucial to establish structure-function relationships. However, determination of short- and long-range metal distributions is nontrivial and requires the use of specialized characterization techniques. Advancements in the characterization of metal distributions and interactions at these length scales is key to rapid advancement and rational design of functional heterometallic MOFs. This perspective summarizes the state-of-the-art in the characterization of heterometallic MOFs, with a focus on techniques that allow metal distributions to be better understood. Using complementary analyses, in conjunction with computational methods, is critical as this field moves toward increasingly complex, multifunctional systems.
Diffusion properties of bulk fluids have been predicted using empirical expressions and machine learning (ML) models, suggesting that predictions of diffusion also should be possible for fluids in confined environments. The ability to quickly and accurately predict diffusion in porous materials would enable new discoveries and spur development in relevant technologies such as separations, catalysis, batteries, and subsurface applications. Here in this work, we apply artificial neural network (ANN) models to predict the simulated self-diffusion coefficients of real liquids in both bulk and pore environments. The training data sets were generated from molecular dynamics (MD) simulations of Lennard-Jones particles representing a diverse set of 14 molecules ranging from ammonia to dodecane over a range of liquid pressures and temperatures. Planar, cylindrical, and hexagonal pore models consisted of walls composed of carbon atoms. Our simple model for these liquids was primarily used to generate ANN training data, but the simulated self-diffusion coefficients of bulk liquids show excellent agreement with experimental diffusion coefficients. ANN models based on simple descriptors accurately reproduced the MD diffusion data for both bulk and confined liquids, including the trend of increased mobility in large pores relative to the corresponding bulk liquid.
Calcite (CaCO3) composition and properties are defined by the chemical environment in which CaCO3 forms. However, a complete understanding of the relationship between aqueous chemistry during calcite precipitation and resulting chemical and physical CaCO3 properties remains elusive; therefore, we present an investigation into the coupled effects of divalent cations Sr2+ and Mg2+ on CaCO3 precipitation and subsequent crystal growth. Through chemical analysis of the aqueous phases and microscopy of the resulting calcite phases in compliment with density functional theory calculations, we elucidate the relationship between crystal growth and the resulting composition (elemental and isotopic) of calcite. The results of this experimental and modeling work suggest that Mg2+ and Sr2+ have cation-specific impacts that inhibit calcite crystal growth, including: (1) Sr2+ incorporates more readily into calcite than Mg2+ (DSr > DMg), and increasing [Sr2+]t or [Mg2+]t increases DSr; (2) the inclusion of Mg2+ into structure leads to a reduction in the calcite unit cell volume, whereas Sr2+ leads to an expansion; (3) the inclusion of both Mg2+ and Sr2+ results in a distribution of unit cell impacts based on the relative positions of the Sr2+ and Mg2+ in the lattice. These experiments were conducted at saturation indices of CaCO3 of ∼4.1, favoring rapid precipitation. This rapid precipitation resulted in observed Sr isotope fractionation confirming Sr isotopic fractionation is dependent upon the precipitation rate. We further note that the precipitation and growth of calcite favors the incorporation of the lighter 86Sr isotope over the heavier 87Sr isotope, regardless of the initial solution conditions, and the degree of fractionation increases with DSr. In sum, these results demonstrate the impact of solution environment to influence the incorporation behavior and crystal growth behavior of calcite. These factors are important to understand in order to effectively use geochemical signatures resulting from calcite precipitation or dissolution to gain specific information.
The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). A high priority for SFWST disposal R&D is disposal system modeling (Sassani et al. 2021). The SFWST Geologic Disposal Safety Assessment (GDSA) work package is charged with developing a disposal system modeling and analysis capability for evaluating generic disposal system performance for nuclear waste in geologic media. This report describes fiscal year (FY) 2022 advances of the Geologic Disposal Safety Assessment (GDSA) performance assessment (PA) development groups of the SFWST Campaign. The common mission of these groups is to develop a geologic disposal system modeling capability for nuclear waste that can be used to assess probabilistically the performance of generic disposal options and generic sites. The modeling capability under development is called GDSA Framework (pa.sandia.gov). GDSA Framework is a coordinated set of codes and databases designed for probabilistically simulating the release and transport of disposed radionuclides from a repository to the biosphere for post-closure performance assessment. Primary components of GDSA Framework include PFLOTRAN to simulate the major features, events, and processes (FEPs) over time, Dakota to propagate uncertainty and analyze sensitivities, meshing codes to define the domain, and various other software for rendering properties, processing data, and visualizing results.
Rare-earth polynuclear metal-organic frameworks (RE-MOFs) have demonstrated high durability for caustic acid gas adsorption and separation based on gas adsorption to the metal clusters. The metal clusters in the RE-MOFs traditionally contain RE metals bound by μ3-OH groups connected via organic linkers. Recent studies have suggested that these hydroxyl groups could be replaced by fluorine atoms during synthesis that includes a fluorine-containing modulator. Here, a combined modeling and experimental study was undertaken to elucidate the role of metal cluster fluorination on the thermodynamic stability, structure, and gas adsorption properties of RE-MOFs. Through systematic density-functional theory calculations, fluorinated clusters were found to be thermodynamically more stable than hydroxylated clusters by up to 8-16 kJ/mol per atom for 100% fluorination. The extent of fluorination in the metal clusters was validated through a 19F NMR characterization of 2,5-dihydroxyterepthalic acid (Y-DOBDC) MOF synthesized with a fluorine-containing modulator. 19F magic-angle spinning NMR identified two primary peaks in the isotropic chemical shift (δiso) spectra located at -64.2 and -69.6 ppm, matching calculated 19F NMR δiso peaks at -63.0 and -70.0 ppm for fluorinated systems. Calculations also indicate that fluorination of the Y-DOBDC MOF had negligible effects on the acid gas (SO2, NO2, H2O) binding energies, which decreased by only ∼4 kJ/mol for the 100% fluorinated structure relative to the hydroxylated structure. Additionally, fluorination did not change the relative gas binding strengths (SO2 > H2O > NO2). Therefore, for the first time the presence of fluorine in the metal clusters was found to significantly stabilize RE-MOFs without changing their acid-gas adsorption properties.
Symbolic regression (SR) with a multi-gene genetic program has been used to elucidate new empirical equations describing diffusion in Lennard-Jones (LJ) fluids. Examples include equations to predict self-diffusion in pure LJ fluids and equations describing the finite-size correction for self-diffusion in binary LJ fluids. The performance of the SR-obtained equations was compared to that of both the existing empirical equations in the literature and to the results from artificial neural net (ANN) models recently reported. It is found that the SR equations have improved predictive performance in comparison to the existing empirical equations, even though employing a smaller number of adjustable parameters, but show an overall reduced performance in comparison to more extensive ANNs.
Predicting the diffusion coefficient of fluids under nanoconfinement is important for many applications including the extraction of shale gas from kerogen and product turnover in porous catalysts. Due to the large number of important variables, including pore shape and size, fluid temperature and density, and the fluid-wall interaction strength, simulating diffusion coefficients using molecular dynamics (MD) in a systematic study could prove to be prohibitively expensive. Here, we use machine learning models trained on a subset of MD data to predict the self-diffusion coefficients of Lennard-Jones fluids in pores. Our MD data set contains 2280 simulations of ideal slit pore, cylindrical pore, and hexagonal pore geometries. We use the forward feature selection method to determine the most useful features (i.e., descriptors) for developing an artificial neutral network (ANN) model with an emphasis on easily acquired features. Our model shows good predictive ability with a coefficient of determination (i.e., R2) of ∼0.99 and a mean squared error of ∼2.9 × 10-5. Finally, we propose an alteration to our feature set that will allow the ANN model to be applied to nonideal pore geometries.
The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and highlevel nuclear waste (HLW). A high priority for SFWST disposal R&D is disposal system modeling (DOE 2012, Table 6; Sevougian et al. 2019). The SFWST Geologic Disposal Safety Assessment (GDSA) work package is charged with developing a disposal system modeling and analysis capability for evaluating generic disposal system performance for nuclear waste in geologic media.