Publications

Results 1–25 of 255

Search results

Jump to search filters

Microstructural effects on the rotating bending fatigue behavior of Ti–6Al–4V produced via laser powder bed fusion with novel heat treatments

International Journal of Fatigue

Derimow, Nicholas; Benzing, Jake T.; Newton, David; Beamer, Chad; Lu, Ping; Delrio, F.W.; Moser, Newell; Kafka, Orion L.; Fishel, Ryan; Koepke, Lucas; Hadley, Chris; Hrabe, Nik

The rotating bending fatigue (RBF) behavior (fully reversed, R = −1) of additively manufactured (AM) Ti–6Al–4V alloy produced via laser powder bed fusion (PBF-L) was investigated with respect to different microstructures achieved through novel heat treatments. The investigation herein seeks to elucidate the effect of microstructure by controlling variables that can affect fatigue behavior in Ti–6Al–4V, such as chemistry, porosity, and surface roughness. In order to control these variables, different hot isostatic pressing (HIP) treatments at 800 °C, 920 °C, and 1050 °C with a 920 °C temper were applied to three sets of Ti–6Al–4V cylinders that originated from the same PBF-L build, such that there were 30 tests per condition. After HIP treatment, the specimens were machined and tested. The highest runout stress was achieved after sub-β transus HIP at 800 °C for 2 h at 200 MPa of pressure. A significant drop in fatigue strength was attributed to large prior-β grains and grain boundary α resulting from super-β transus HIP treated specimens. For the sub-β transus HIP specimens, differences in fatigue strength were attributed to α lath thickness, relative dislocation density, and dislocation boundary strengthening.

More Details

Thermal Transport and Mechanical Stress Mapping of a Compression Bonded GaN/Diamond Interface for Vertical Power Devices

ACS Applied Materials and Interfaces

Delmas, William; Jarzembski, Amun; Bahr, Matthew N.; Mcdonald, Anthony; Hodges, Wyatt; Lu, Ping; Deitz, Julia I.; Ziade, Elbara; Piontkowski, Zachary T.; Yates, Luke

Bonding diamond to the back side of gallium nitride (GaN) electronics has been shown to improve thermal management in lateral devices; however, engineering challenges remain with the bonding process and characterizing the bond quality for vertical device architectures. Here, integration of these two materials is achieved by room-temperature compression bonding centimeter-scale GaN and a diamond die via an intermetallic bonding layer of Ti/Au. Recent attempts at GaN/diamond bonding have utilized a modified surface activation bonding (SAB) method, which requires Ar fast atom bombardment immediately followed by bonding within the same tool under ultrahigh vacuum (UHV) conditions. The method presented here does not require a dedicated SAB tool yet still achieves bonding via a room-temperature metal-metal compression process. Imaging of the buried interface and the total bonding area is achieved via transmission electron microscopy (TEM) and confocal acoustic scanning microscopy (C-SAM), respectively. The thermal transport quality of the bond is extracted from spatially resolved frequency-domain thermoreflectance (FDTR) with the bonded areas boasting a thermal boundary conductance of >100 MW/m2·K. Additionally, Raman maps of GaN near the GaN-diamond interface reveal a low level of compressive stress, <80 MPa, in well-bonded regions. FDTR and Raman were coutilized to map these buried interfaces and revealed some poor thermally bonded areas bordered by high-stress regions, highlighting the importance of spatial sampling for a complete picture of bond quality. Overall, this work demonstrates a novel method for thermal management in vertical GaN devices that maintains low intrinsic stresses while boasting high thermal boundary conductances.

More Details

Controlled semiconductor quantum dot fabrication utilizing focus ion beam

Lu, Ping

In this project, we experimented the focused ion beam (FIB) based fabrications of semiconductor quantum dots (QDs) by using metal nano particles (NPs) (e.g., Al) on semiconductor as a template and by means of the FIB induced direct metal-to-QD conversion. We have examined effect of the experimental conditions, including Ga+ ion energy and dose as well as substrate temperature. The results of experiments have shown AlGaSb QD formation on GaSb substrate can be achieved under certain conditions but there are many challenges about the techniques, including compositional nonuniformity of the QDs formed, partial conversion of the metal NP to QD, and high defect concentration in the QDs.

More Details

Controllable Phase Transition Properties in VO2 Films via Metal-Ion Intercalation

Nano Letters

Lu, Ping

VO2 has shown great promise for sensors, smart windows, and energy storage devices, because of its drastic semiconductor-to-metal transition (SMT) near 340 K coupled with a structural transition. To push its application toward room-temperature, effective transition temperature (Tc) tuning in VO2 is desired. In this study, tailorable SMT characteristics in VO2 films have been achieved by the electrochemical intercalation of foreign ions (e.g., Li ions). By controlling the relative potential with respect to Li/Li+ during the intercalation process, Tc of VO2 can be effectively and systematically tuned in the window from 326.7 to 340.8 K. The effective Tc tuning could be attributed to the observed strain and lattice distortion and the change of the charge carrier density in VO2 introduced by the intercalation process. This demonstration opens up a new approach in tuning the VO2 phase transition toward room-temperature device applications and enables future real-time phase change property tuning.

More Details

Anisotropic optical and magnetic response in self-assembled TiN–CoFe2 nanocomposites

Materials Today Nano

Lu, Ping

Transition metal nitrides (e.g., TiN) have shown tremendous promise in optical metamaterials for nanophotonic devices due to their plasmonic properties comparable to noble metals and superior high temperature stability. Vertically aligned nanocomposites (VANs) offer a great platform for combining two dissimilar functional materials with a one-step deposition technique toward multifunctionality integration and strong structural/property anisotropy. Here, we report a two-phase nanocomposite design combining ferromagnetic CoFe2 nanosheets in the plasmonic TiN matrix as a new hybrid plasmonic metamaterial. The hybrid metamaterials exhibit anisotropic optical and magnetic responses, as well as a pronounced magneto-optical coupling response evidenced by Magneto-optic Kerr Effect measurement, owing to the novel vertically aligned structure. This work demonstrates a new TiN-based metamaterial with anisotropic properties and multifunctionality toward light polarization modulation, optical switching, and integrated optics.

More Details

The combined effects of Mg2+ and Sr2+ incorporation during CaCO3 precipitation and crystal growth

Geochimica et Cosmochimica Acta

Knight, A.W.; Harvey, Jacob A.; Shohel, Mohammad; Lu, Ping; Cummings, Damion P.; Ilgen, Anastasia G.

Calcite (CaCO3) composition and properties are defined by the chemical environment in which CaCO3 forms. However, a complete understanding of the relationship between aqueous chemistry during calcite precipitation and resulting chemical and physical CaCO3 properties remains elusive; therefore, we present an investigation into the coupled effects of divalent cations Sr2+ and Mg2+ on CaCO3 precipitation and subsequent crystal growth. Through chemical analysis of the aqueous phases and microscopy of the resulting calcite phases in compliment with density functional theory calculations, we elucidate the relationship between crystal growth and the resulting composition (elemental and isotopic) of calcite. The results of this experimental and modeling work suggest that Mg2+ and Sr2+ have cation-specific impacts that inhibit calcite crystal growth, including: (1) Sr2+ incorporates more readily into calcite than Mg2+ (DSr > DMg), and increasing [Sr2+]t or [Mg2+]t increases DSr; (2) the inclusion of Mg2+ into structure leads to a reduction in the calcite unit cell volume, whereas Sr2+ leads to an expansion; (3) the inclusion of both Mg2+ and Sr2+ results in a distribution of unit cell impacts based on the relative positions of the Sr2+ and Mg2+ in the lattice. These experiments were conducted at saturation indices of CaCO3 of ~4.1, favoring rapid precipitation. This rapid precipitation resulted in observed Sr isotope fractionation confirming Sr isotopic fractionation is dependent upon the precipitation rate. We further note that the precipitation and growth of calcite favors the incorporation of the lighter 86Sr isotope over the heavier 87Sr isotope, regardless of the initial solution conditions, and the degree of fractionation increases with DSr. In sum, these results demonstrate the impact of solution environment to influence the incorporation behavior and crystal growth behavior of calcite. These factors are important to understand in order to effectively use geochemical signatures resulting from calcite precipitation or dissolution to gain specific information.

More Details

Novel self-assembled two-dimensional layered oxide structure incorporated with Au nanoinclusions towards multifunctionalities

Nano Research

Lu, Ping

Two-dimensional (2D) layered oxides have recently attracted wide attention owing to the strong coupling among charges, spins, lattice, and strain, which allows great flexibility and opportunities in structure designs as well as multifunctionality exploration. In parallel, plasmonic hybrid nanostructures exhibit exotic localized surface plasmon resonance (LSPR) providing a broad range of applications in nanophotonic devices and sensors. A hybrid material platform combining the unique multifunctional 2D layered oxides and plasmonic nanostructures brings optical tuning into the new level. In this work, a novel self-assembled Bi2MoO6 (BMO) 2D layered oxide incorporated with plasmonic Au nanoinclusions has been demonstrated via one-step pulsed laser deposition (PLD) technique. Comprehensive microstructural characterizations, including scanning transmission electron microscopy (STEM), differential phase contrast imaging (DPC), and STEM tomography, have demonstrated the high epitaxial quality and particle-in-matrix morphology of the BMO-Au nanocomposite film. DPC-STEM imaging clarifies the magnetic domain structures of BMO matrix. Three different BMO structures including layered supercell (LSC) and superlattices have been revealed which is attributed to the variable strain states throughout the BMO-Au film. Owing to the combination of plasmonic Au and layered structure of BMO, the nanocomposite film exhibits a typical LSPR in visible wavelength region and strong anisotropy in terms of its optical and ferromagnetic properties. This study opens a new avenue for developing novel 2D layered complex oxides incorporated with plasmonic metal or semiconductor phases showing great potential for applications in multifunctional nanoelectronics devices. [Figure not available: see fulltext.]

More Details

Development of Single Photon Sources in GaN

Mounce, Andrew M.; Wang, George; Schultz, Peter A.; Titze, Michael; Campbell, Deanna M.; Lu, Ping; Henshaw, Jacob D.

The recent discovery of bright, room-temperature, single photon emitters in GaN leads to an appealing alternative to diamond best single photon emitters given the widespread use and technological maturity of III-nitrides for optoelectronics (e.g. blue LEDs, lasers) and high-speed, high-power electronics. This discovery opens the door to on-chip and on-demand single photon sources integrated with detectors and electronics. Currently, little is known about the underlying defect structure nor is there a sense of how such an emitter might be controllably created. A detailed understanding of the origin of the SPEs in GaN and a path to deterministically introduce them is required. In this project, we develop new experimental capabilities to then investigate single photon emission from GaN nanowires and both GAN and AlN wafers. We ion implant our wafers with the ion implanted with our focused ion beam nanoimplantation capabilities at Sandia, to go beyond typical broad beam implantation and create single photon emitting defects with nanometer precision. We've created light emitting sources using Li+ and He+, but single photon emission has yet to be demonstrated. In parallel, we calculate the energy levels of defects and transition metal substitutions in GaN to gain a better understanding of the sources of single photon emission in GaN and AlN. The combined experimental and theoretical capabilities developed throughout this project will enable further investigation into the origins of single photon emission from defects in GaN, AlN, and other wide bandgap semiconductors.

More Details

Characterization of Shallow, Undoped Ge/SiGe Quantum Wells Commercially Grown on 8-in. (100) Si Wafers

ACS Applied Electronic Materials

Hutchins-Delgado, Troy A.; Miller, Andrew J.; Scott, Robin; Lu, Ping; Luhman, Dwight R.; Lu, Tzu M.

Hole spins in Ge quantum wells have shown success in both spintronic and quantum applications, thereby increasing the demand for high-quality material. We performed material analysis and device characterization of commercially grown shallow and undoped Ge/SiGe quantum well heterostructures on 8-in. (100) Si wafers. Material analysis reveals the high crystalline quality, sharp interfaces, and uniformity of the material. We demonstrate a high mobility (1.7 × 105cm2V-1s-1) 2D hole gas in a device with a conduction threshold density of 9.2 × 1010cm-2. We study the use of surface preparation as a tool to control barrier thickness, density, mobility, and interface trap density. We report interface trap densities of 6 × 1012eV-1. Our results validate the material's high quality and show that further investigation into improving device performance is needed. We conclude that surface preparations which include weak Ge etchants, such as dilute H2O2, can be used for postgrowth control of quantum well depth in Ge-rich SiGe while still providing a relatively smooth oxide-semiconductor interface. Our results show that interface state density is mostly independent of our surface preparations, thereby implying that a Si cap layer is not necessary for device performance. Transport in our devices is instead limited by the quantum well depth. Commercially sourced Ge/SiGe, such as studied here, will provide accessibility for future investigations.

More Details

Intrinsic ferroelectricity in Y-doped HfO2 thin films

Nature Materials

Lu, Ping

Ferroelectric HfO2-based materials hold great potential for the widespread integration of ferroelectricity into modern electronics due to their compatibility with existing Si technology. Earlier work indicated that a nanometre grain size was crucial for the stabilization of the ferroelectric phase. This constraint, associated with a high density of structural defects, obscures an insight into the intrinsic ferroelectricity of HfO2-based materials. Here we demonstrate that stable and enhanced polarization can be achieved in epitaxial HfO2 films with a high degree of structural order (crystallinity). An out-of-plane polarization value of 50 μC cm–2 has been observed at room temperature in Y-doped HfO2(111) epitaxial thin films, with an estimated full value of intrinsic polarization of 64 μC cm–2, which is in close agreement with density functional theory calculations. The crystal structure of films reveals the Pca21 orthorhombic phase with small rhombohedral distortion, underlining the role of the structural constraint in stabilizing the ferroelectric phase. Our results suggest that it could be possible to exploit the intrinsic ferroelectricity of HfO2-based materials, optimizing their performance in device applications.

More Details

Selective amorphization of SiGe in Si/SiGe nanostructures via high energy Si+ implant

Journal of Applied Physics

Turner, Emily M.; Campbell, Quinn; Avci, Ibrahim; Weber, William J.; Lu, Ping; Wang, George T.; Jones, Kevin S.

The selective amorphization of SiGe in Si/SiGe nanostructures via a 1 MeV Si+ implant was investigated, resulting in single-crystal Si nanowires (NWs) and quantum dots (QDs) encapsulated in amorphous SiGe fins and pillars, respectively. The Si NWs and QDs are formed during high-temperature dry oxidation of single-crystal Si/SiGe heterostructure fins and pillars, during which Ge diffuses along the nanostructure sidewalls and encapsulates the Si layers. The fins and pillars were then subjected to a 3 × 1015 ions/cm2 1 MeV Si+ implant, resulting in the amorphization of SiGe, while leaving the encapsulated Si crystalline for larger, 65-nm wide NWs and QDs. Interestingly, the 26-nm diameter Si QDs amorphize, while the 28-nm wide NWs remain crystalline during the same high energy ion implant. This result suggests that the Si/SiGe pillars have a lower threshold for Si-induced amorphization compared to their Si/SiGe fin counterparts. However, Monte Carlo simulations of ion implantation into the Si/SiGe nanostructures reveal similar predicted levels of displacements per cm3. Molecular dynamics simulations suggest that the total stress magnitude in Si QDs encapsulated in crystalline SiGe is higher than the total stress magnitude in Si NWs, which may lead to greater crystalline instability in the QDs during ion implant. The potential lower amorphization threshold of QDs compared to NWs is of special importance to applications that require robust QD devices in a variety of radiation environments.

More Details

Tunable physical properties in Bi-based layered supercell multiferroics embedded with Au nanoparticles

Nanoscale Advances

Lu, Ping

Multiferroic materials are an interesting functional material family combining two ferroic orderings, e.g., ferroelectric and ferromagnetic orderings, or ferroelectric and antiferromagnetic orderings, and find various device applications, such as spintronics, multiferroic tunnel junctions, etc. Coupling multiferroic materials with plasmonic nanostructures offers great potential for optical-based switching in these devices. Here, we report a novel nanocomposite system consisting of layered Bi1.25AlMnO3.25 (BAMO) as a multiferroic matrix and well dispersed plasmonic Au nanoparticles (NPs) and demonstrate that the Au nanoparticle morphology and the nanocomposite properties can be effectively tuned. Specifically, the Au particle size can be tuned from 6.82 nm to 31.59 nm and the 6.82 nm one presents the optimum ferroelectric and ferromagnetic properties and plasmonic properties. Besides the room temperature multiferroic properties, the BAMO-Au nanocomposite system presents other unique functionalities including localized surface plasmon resonance (LSPR), hyperbolicity in the visible region, and magneto-optical coupling, which can all be effectively tailored through morphology tuning. This study demonstrates the feasibility of coupling single phase multiferroic oxides with plasmonic metals for complex nanocomposite designs towards optically switchable spintronics and other memory devices.

More Details

Irradiation-induced grain boundary facet motion: In situ observations and atomic-scale mechanisms

Science Advances

Barr, Christopher M.; Chen, Elton Y.; Nathaniel, James E.; Lu, Ping; Adams, David P.; Dingreville, Remi; Boyce, Brad L.; Hattar, Khalid M.; Medlin, Douglas L.

Metals subjected to irradiation environments undergo microstructural evolution and concomitant degradation, yet the nanoscale mechanisms for such evolution remain elusive. Here, we combine in situ heavy ion irradiation, atomic resolution microscopy, and atomistic simulation to elucidate how radiation damage and interfacial defects interplay to control grain boundary (GB) motion. While classical notions of boundary evolution under irradiation rest on simple ideas of curvature-driven motion, the reality is far more complex. Focusing on an ion-irradiated Pt Σ3 GB, we show how this boundary evolves by the motion of 120° facet junctions separating nanoscale {112} facets. Our analysis considers the short- and mid-range ion interactions, which roughen the facets and induce local motion, and longer-range interactions associated with interfacial disconnections, which accommodate the intergranular misorientation. We suggest how climb of these disconnections could drive coordinated facet junction motion. These findings emphasize that both local and longer-range, collective interactions are important to understanding irradiation-induced interfacial evolution.

More Details

Role of Environment on the Shear-Induced Structural Evolution of MoS2and Impact on Oxidation and Tribological Properties for Space Applications

ACS Applied Materials and Interfaces

Babuska, Tomas F.; Curry, John; Dugger, Michael T.; Lu, Ping; Xin, Yan; Klueter, Sam; Kozen, Alexander C.; Grejtak, Tomas; Krick, Brandon A.

This work investigates the role of water and oxygen on the shear-induced structural modifications of molybdenum disulfide (MoS2) coatings for space applications and the impact on friction due to oxidation from aging. We observed from transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) that sliding in both an inert environment (i.e., dry N2) or humid lab air forms basally oriented (002) running films of varying thickness and structure. Tribological testing of the basally oriented surfaces created in dry N2 and air showed lower initial friction than a coating with an amorphous or nanocrystalline microstructure. Aging of coatings with basally oriented surfaces was performed by heating samples at 250 °C for 24 h. Post aging tribological testing of the as-deposited coating showed increased initial friction and a longer transition from higher friction to lower friction (i.e., run-in) due to oxidation of the surface. Tribological testing of raster patches formed in dry N2 and air both showed an improved resistance to oxidation and reduced initial friction after aging. The results from this study have implications for the use of MoS2-coated mechanisms in aerospace and space applications and highlight the importance of preflight testing. Preflight cycling of components in inert or air environments provides an oriented surface microstructure with fewer interaction sites for oxidation and a lower shear strength, reducing the initial friction coefficient and oxidation due to aging or exposure to reactive species (i.e., atomic oxygen).

More Details
Results 1–25 of 255
Results 1–25 of 255