Pressure-shear plate impact experiments were performed to quantify flow strength of wrought, as-built additively manufactured (AM), and heat-treated and recrystallized AM 304 L stainless steel (SS304L) under combined loading. Impact velocities spanned between 0.03 and 0.24 mm/μs, resulting in corresponding pressures of 0.62–5.93 GPa. Flow strength measurements are comparable for the sample variants across the studied loading conditions; however, shear wave structures significantly differ between sample type. Microstructurally aware simulations indicate local strain differences attributed to anisotropic elastic constants of large grains (~1 mm) in the as-built and heat-treated AM may impede the ability to uniformly transmit a shear wave.
Uniaxial strain, reverse-ballistic impact experiments were performed on wrought 17-4 PH H1025 stainless steel, and the resulting Hugoniot was determined to a peak stress of 25 GPa through impedance matching to known standard materials. The measured Hugoniot showed evidence of a solid-solid phase transition, consistent with other martensitic Fe-alloys. The phase transition stress in the wrought 17-4 PH H1025 stainless steel was measured in a uniaxial strain, forward-ballistic impact experiment to be 11.4 GPa. Linear fits to the Hugoniot for both the low and high pressure phase are presented with corresponding uncertainty. The low pressure martensitic phase exhibits a shock velocity that is weakly dependent on the particle velocity, consistent with other martensitic Fe-alloys.
The high-pressure dynamic response of titanium dioxide (TiO 2) is not only of interest because of its numerous industrial applications but also because of its structural similarities to silica (SiO 2). We performed plate impact experiments in a two-stage light gas gun, at peak stresses from 64 to 221 GPa to determine the TiO 2 response along the Hugoniot. The lower stress experiment at 64 GPa shows an elastic behavior followed by an elastic-plastic transition, whereas the high stress experiments above 64 GPa show a single wave structure. Previous shock studies have shown the presence of high-pressure phases (HPP) I (26 GPa) and HPP II (100 GPa); however, our data suggest that the HPP I phase is stable up to 150 GPa. Using a combination of data from our current study and our previous Z-data, we determine that TiO 2 likely melts on the Hugoniot at 157 GPa. Furthermore, our data confirm that TiO 2 is not highly incompressible as shown by a previous study.
We present results from an experimental technique used to estimate the strength of Ta at extreme pressures (150 GPa) and strain rates (107s-1). A graded-density impactor (GDI) was fabricated using sputter deposition to produce an approximately 40-μm-thick film containing alternating layers of Al and Cu. The thicknesses of the respective layers are adjusted to give an effective density gradient through the film. The GDIs were launched with a 2-stage light gas gun, and shock-ramp-release velocity profiles were measured over timescales of ∼10 ns. Results are presented for the direct impact of the film onto LiF windows, which allows for a dynamic characterization of the GDI, as well as from impact onto thin (∼40μm) sputtered Ta samples backed by a LiF window. The measurements were coupled with mesoscale numerical simulations to infer the strength of Ta, and the results agree well with other high-pressure platforms, particularly when strain-rate, microstructural, and thermodynamic-path differences are considered.
The use of S2 glass/SC15 epoxy woven fabric composite materials for blast and ballistic protection has been an area of on-going research over the past decade. In order to accurately model this material system within potential applications under extreme loading conditions, a well characterized and understood anisotropic equation of state (EOS) is needed. This work details both an experimental program and associated analytical modelling efforts which aim to provide better physical understanding of the anisotropic EOS behavior of this material. Experimental testing focused on planar shock impact tests loading the composite to peak pressures of 15 GPa in both the transverse and longitudinal orientations. Test results highlighted the anisotropic response of the material and provided a basis by which the associated numeric micromechanical investigation was compared. Results of the combined experimental and numerical modeling investigation provided insights into not only the constituent material influence on the composite response but also the importance of the plain weave microstructure geometry and the significance of the microstructural configuration.
Here, the work presented in this paper details both an experimental program and an associated numerical modeling effort to characterize and predict the ballistic response of S-2 glass/SC15 epoxy composite panels. The experimental program consisted of ¼ inch diameter soft carbon steel spheres impacting ¼ and ½ inch thick flat composite panels at velocities ranging from 220 to 1570 m/s. High speed cameras were used to capture the impact event and resulting residual velocity of the spheres for each test configuration. After testing, each panel was inspected both visually and with ultrasonic C-scan techniques to determine the extent and depth of damage imparted on the panel by the impactor. The numerical modeling efforts utilized the anisotropic multi-constituent composite model (MCM) within the CTH shock physics hydrocode. The MCM model allows for evaluation of damage at the constituent level through continuum averaged stress and strain fields. The model also accounts for the inherent coupling of the equation of state and strength response that occurs in anisotropic composite materials. Finally, the simulation results are compared against the experimentally measured residual velocity as a quantitative metric and against the measured damage extent and patterns as a qualitative metric. The comparisons show good agreement in residual velocity and damage extent.