Publications

Results 1–25 of 182

Search results

Jump to search filters

DECOVALEX-2023: Task F1 Final Report

Mariner, Paul; Leone, Rosemary C.; Stein, Emily

DECOVALEX-2023 Task F is a comparison of models and methods for post-closure performance assessment (PA) of a deep geologic repository for radioactive waste. The general aims of Task F are to build confidence in the models, methods, and software used for PA and to stimulate additional research and development in PA methodologies. The task objectives are to motivate development of PA modelling skills and capabilities, to examine the influence of model choices on calculated repository performance, and to compare the uncertainties introduced by model choices to other sources of uncertainty. Task F involves no actual experiment or site. It is a PA modelling exercise that requires the conceptual development of hypothetical repository designs and geologic settings. Because three of the teams were interested in salt and the rest of the teams were interested in crystalline rock, Task F was split into two branches: Task F1 for crystalline rock and Task F2 for salt. This report is for Task F1, crystalline rock. Teams from seven countries (Canada, Czech Republic, Germany, Korea, Sweden, Taiwan, and United States) participated in Task F1. The teams worked together to define the features, events, and processes of the reference case repository and established a set of performance measures. In addition, they defined a set of benchmark problems designed to test and compare modelling capabilities for fracture flow and transport at different scales. The repository design and benchmark problems are documented in a Task Specification that evolved over time as the group honed the specifications. The benchmark problems verified that each team can aptly model flow and transport in fractured media in 1-, 2-, and 3-dimensions. Two general approaches were used for the 3-dimensional benchmarks: discrete fracture network (DFN) and equivalent continuous porous medium (ECPM). DFN modelling involves explicit meshing of each fracture while ECPM modelling aims to capture the effective porosity and directional permeability of each cell in a space-filling mesh as affected by intersecting fractures. In some models, a combination of the two is used, i.e., DFN for large known fractures and ECPM for the rest of the domain. Transport is solved by using either the advection-dispersion equation or particle tracking. Although some variation is observed among model breakthrough curves in the benchmark problems, there is strong agreement in breakthrough behaviour up to at least the 75th percentile for all benchmarks. At the 90th percentile, breakthrough results show larger differences, suggesting several models retain substantially higher fractions of tracer in regions of slower moving water. In addition to the flow and transport benchmarks, several teams completed the source term benchmark, verifying capabilities for modelling radionuclide decay and ingrowth, waste package breach, instant release fractions, fuel matrix degradation rates, and radionuclide solubility limitations. The reference case is conceptualized as a generic spent fuel repository at a depth of 450 m in fractured crystalline rock. The repository has 50 parallel backfilled drifts, each with 50 deposition holes 6 m apart. Each deposition hole contains a 4-PWR waste package and bentonite buffer. The rock domain is 5 km in length, 2 km in width, and 1 km in depth. It has 6 deterministic fractured deformation zones and a multitude of stochastic fractures. Teams generally used the ECPM approach for the entire rock or a hybrid approach in which the deterministic fracture zones are modelled with a DFN and the rest of the rock is modelled by ECPM. Of the reference case problems specified, only the results of the initial reference case problem are compared in this report. The initial problem focuses on transport from the deposition holes to the surface, i.e., it neglects waste package performance. Tracers are released at all waste package locations at time zero and tracked for their releases to the near field and ground surface. The water fluxes calculated at the ground surface entry and exit regions of the domain are similar for all models except for two that have considerably lower fluxes. For tracer transport, large differences are observed among models in the magnitude of tracer transported. Much of the difference appears to be due to how the repository is implemented and hence the different degrees of repository simplification. Models that exclude the drifts, buffer, and backfill from the domain tend to show greater release of tracers and radionuclides from the repository. The initial study presented here indicates that major differences in modelling important processes within the repository (e.g., diffusion through buffer and backfill) can produce broadly different release and transport results, especially when those processes are excluded. Even for the models that included all specified features, events, and processes, the results show significant differences and demonstrate the importance of examining multiple modelling approaches in performance assessment. The differences in results observed in this study are expected to motivate teams to either increase complexity in future versions of the reference case models or to improve methods to account for the effects of simplified features and processes. Either way, future improvements in these models are expected to produce results that more closely agree.

More Details

GDSA Repository Systems Analysis Investigations in FY 2023

Laforce, Tara C.; Basurto, Eduardo; Bigler, Lisa A.; Chang, Kyung W.; Ebeida, Mohamed; Jayne, Richard; Leone, Rosemary C.; Mariner, Paul; Sharpe, Jeff H.

This report describes specific activities in the Fiscal Year (FY) 2023 associated with the Geologic Disposal Safety Assessment (GDSA) Repository Systems Analysis (RSA) work package funded by the Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Spent Fuel and Waste Disposition (SFWD).

More Details

Advanced reactors spent fuel and waste streams disposition strategies

Matteo, Edward N.; Price, Laura L.; Pulido, Ramon J.; Weck, Philippe F.; Taconi, Anna M.; Mariner, Paul; Hadgu, Teklu; Park, Heeho D.; Greathouse, Jeffery A.; Sassani, David C.; Alsaed, Halim

This report describes research and development (R&D) activities conducted during Fiscal Year 2023 (FY23) in the Advanced Fuels and Advanced Reactor Waste Streams Strategies work package in the Spent Fuel Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). This report is focused on evaluating and cataloguing Advanced Reactor Spent Nuclear Fuel (AR SNF) and Advanced Reactor Waste Streams (ARWS) and creating Back-end Nuclear Fuel Cycle (BENFC) strategies for their disposition. The R&D team for this report is comprised of researchers from Sandia National Laboratories and Enviro Nuclear Services, LLC.

More Details

DECOVALEX-2023: Task F Specification (Revision 10)

Laforce, Tara C.; Jayne, Richard; Leone, Rosemary C.; Mariner, Paul; Stein, Emily; Nguyen, Son; Frank, Tanja

This report is the revised (Revision 10) Task F specification for DECOVALEX-2023. Task F is a comparison of the models and methods used in deep geologic repository performance assessment. The task proposes to develop a reference case for a mined repository in a fractured crystalline host rock (Task F1) and a reference case for a mined repository in a salt formation (Task F2). Teams may choose to participate in the comparison for either or both reference cases. For each reference case, a common set of conceptual models and parameters describing features, events, and processes that impact performance will be given, and teams will be responsible for determining how best to implement and couple the models. The comparison will be conducted in stages, beginning with a comparison of key outputs of individual process models, followed by a comparison of a single deterministic simulation of the full reference case, and moving on to uncertainty propagation and uncertainty and sensitivity analysis. This report provides background information, a summary of the proposed reference cases, and a staged plan for the analysis.

More Details

Machine Learning Surrogates of a Fuel Matrix Degradation Process Model for Performance Assessment of a Nuclear Waste Repository

Nuclear Technology

Debusschere, Bert; Seidl, D.T.; Berg, Timothy M.; Chang, Kyung W.; Leone, Rosemary C.; Swiler, Laura P.; Mariner, Paul

Spent nuclear fuel repository simulations are currently not able to incorporate detailed fuel matrix degradation (FMD) process models due to their computational cost, especially when large numbers of waste packages breach. The current paper uses machine learning to develop artificial neural network and k-nearest neighbor regression surrogate models that approximate the detailed FMD process model while being computationally much faster to evaluate. Using fuel cask temperature, dose rate, and the environmental concentrations of CO32−, O2, Fe2+, and H2 as inputs, these surrogates show good agreement with the FMD process model predictions of the UO2 degradation rate for conditions within the range of the training data. A demonstration in a full-scale shale repository reference case simulation shows that the incorporation of the surrogate models captures local and temporal environmental effects on fuel degradation rates while retaining good computational efficiency.

More Details

DECOVALEX-2023 Task F Specification (Rev. 9)

Laforce, Tara C.; Jayne, Richard; Leone, Rosemary C.; Mariner, Paul; Stein, Emily; Nguyen, Son; Frank, Tanja

This report is the revised (Revision 9) Task F specification for DECOVALEX-2023. Task F is a comparison of the models and methods used in deep geologic repository performance assessment. The task proposes to develop a reference case for a mined repository in a fractured crystalline host rock (Task F1) and a reference case for a mined repository in a salt formation (Task F2). Teams may choose to participate in the comparison for either or both reference cases. For each reference case, a common set of conceptual models and parameters describing features, events, and processes that impact performance will be given, and teams will be responsible for determining how best to implement and couple the models. The comparison will be conducted in stages, beginning with a comparison of key outputs of individual process models, followed by a comparison of a single deterministic simulation of the full reference case, and moving on to uncertainty propagation and uncertainty and sensitivity analysis. This report provides background information, a summary of the proposed reference cases, and a staged plan for the analysis.

More Details

Sensitivity analysis of generic deep geologic repository with focus on spatial heterogeneity induced by stochastic fracture network generation

Advances in Water Resources

Brooks, Dusty M.; Swiler, Laura P.; Stein, Emily; Mariner, Paul; Basurto, Eduardo; Portone, Teresa; Eckert, Aubrey; Leone, Rosemary C.

Geologic Disposal Safety Assessment Framework is a state-of-the-art simulation software toolkit for probabilistic post-closure performance assessment of systems for deep geologic disposal of nuclear waste developed by the United States Department of Energy. This paper presents a generic reference case and shows how it is being used to develop and demonstrate performance assessment methods within the Geologic Disposal Safety Assessment Framework that mitigate some of the challenges posed by high uncertainty and limited computational resources. Variance-based global sensitivity analysis is applied to assess the effects of spatial heterogeneity using graph-based summary measures for scalar and time-varying quantities of interest. Behavior of the system with respect to spatial heterogeneity is further investigated using ratios of water fluxes. This analysis shows that spatial heterogeneity is a dominant uncertainty in predictions of repository performance which can be identified in global sensitivity analysis using proxy variables derived from graph descriptions of discrete fracture networks. New quantities of interest defined using water fluxes proved useful for better understanding overall system behavior.

More Details

GDSA Framework Development and Process Model Integration FY2022

Mariner, Paul; Debusschere, Bert; Fukuyama, David E.; Harvey, Jacob A.; Laforce, Tara C.; Leone, Rosemary C.; Foulk, James W.; Swiler, Laura P.; Taconi, Anna M.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). A high priority for SFWST disposal R&D is disposal system modeling (Sassani et al. 2021). The SFWST Geologic Disposal Safety Assessment (GDSA) work package is charged with developing a disposal system modeling and analysis capability for evaluating generic disposal system performance for nuclear waste in geologic media. This report describes fiscal year (FY) 2022 advances of the Geologic Disposal Safety Assessment (GDSA) performance assessment (PA) development groups of the SFWST Campaign. The common mission of these groups is to develop a geologic disposal system modeling capability for nuclear waste that can be used to assess probabilistically the performance of generic disposal options and generic sites. The modeling capability under development is called GDSA Framework (pa.sandia.gov). GDSA Framework is a coordinated set of codes and databases designed for probabilistically simulating the release and transport of disposed radionuclides from a repository to the biosphere for post-closure performance assessment. Primary components of GDSA Framework include PFLOTRAN to simulate the major features, events, and processes (FEPs) over time, Dakota to propagate uncertainty and analyze sensitivities, meshing codes to define the domain, and various other software for rendering properties, processing data, and visualizing results.

More Details

GDSA Repository Systems Analysis Investigations in FY2022

Laforce, Tara C.; Basurto, Eduardo; Chang, Kyung W.; Ebeida, Mohamed; Eymold, William; Faucett, Christopher A.; Jayne, Richard; Kucinski, Nicholas; Leone, Rosemary C.; Mariner, Paul; Foulk, James W.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy Office of Nuclear Energy, Office of Spent Fuel and Waste Disposition (SFWD), has been conducting research and development on generic deep geologic disposal systems (i.e., geologic repositories). This report describes specific activities in the Fiscal Year (FY) 2022 associated with the Geologic Disposal Safety Assessment (GDSA) Repository Systems Analysis (RSA) work package within the SFWST Campaign. The overall objective of the GDSA RSA work package is to develop generic deep geologic repository concepts and system performance assessment (PA) models in several host-rock environments, and to simulate and analyze these generic repository concepts and models using the GDSA Framework toolkit, and other tools as needed.

More Details

Uncertainty and Sensitivity Analysis Methods and Applications in the GDSA Framework (FY2022)

Swiler, Laura P.; Basurto, Eduardo; Brooks, Dusty M.; Eckert, Aubrey; Leone, Rosemary C.; Mariner, Paul; Portone, Teresa; Foulk, James W.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling. These priorities are directly addressed in the SFWST Geologic Disposal Safety Assessment (GDSA) control account, which is charged with developing a geologic repository system modeling and analysis capability, and the associated software, GDSA Framework, for evaluating disposal system performance for nuclear waste in geologic media. GDSA Framework is supported by SFWST Campaign and its predecessor the Used Fuel Disposition (UFD) campaign.

More Details

PFLOTRAN Development FY2022

Nole, Michael A.; Beskardes, Gungor D.; Fukuyama, David E.; Leone, Rosemary C.; Mariner, Paul; Park, Heeho D.; Paul, Matthew J.; Foulk, James W.; Hammond, Glenn E.; Lichtner, Peter C.

The Spent Fuel & Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). A high priority for SFWST disposal R&D is to develop a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media. This report describes fiscal year (FY) 2022 accomplishments by the PFLOTRAN Development group of the SFWST Campaign. The mission of this group is to develop a geologic disposal system modeling capability for nuclear waste that can be used to probabilistically assess the performance of generic disposal concepts. In FY 2022, the PFLOTRAN development team made several advancements to our software infrastructure, code performance, and process modeling capabilities.

More Details
Results 1–25 of 182
Results 1–25 of 182