Publications

4 Results
Skip to search filters

Gas-Phase Hydrogen-Atom Measurement above Catalytic and Noncatalytic Materials during Ethane Dehydrogenation

Journal of Physical Chemistry C

Steinmetz, S.A.; DeLaRiva, Andrew T.; Riley, Christopher R.; Schrader, Paul E.; Datye, Abhaya; Spoerke, Erik D.; Kliewer, Christopher J.

The role of a solid surface for initiating gas-phase reactions is still not well understood. The hydrogen atom (H) is an important intermediate in gas-phase ethane dehydrogenation and is known to interact with surface sites on catalysts. However, direct measurements of H near catalytic surfaces have not yet been reported. Here, we present the first H measurements by laser-induced fluorescence in the gas-phase above catalytic and noncatalytic surfaces. Measurements at temperatures up to 700 °C show H concentrations to be at the highest above inert quartz surfaces compared to stainless steel and a platinum-based catalyst. Additionally, H concentrations above the catalyst decreased rapidly with time on stream. These newly obtained observations are consistent with the recently reported differences in bulk ethane dehydrogenation reactivity of these materials, suggesting H may be a good reporter for dehydrogenation activity.

More Details

Achieving high ethylene yield in non-oxidative ethane dehydrogenation

Applied Catalysis A: General

Riley, Christopher R.; De La Riva, Andrew; Ibarra, Isabel L.; Datye, Abhaya K.; Chou, Stanley S.

Steam cracking of ethane, a non-catalytic thermochemical process, remains the dominant means of ethylene production. The severe reaction conditions and energy expenditure involved in this process incentivize the search for alternative reaction pathways and reactor designs which maximize ethylene yield while minimizing cost and energy input. Herein, we report a comparison of catalytic and non-catalytic non-oxidative dehydrogenation of ethane. We achieve ethylene yields as high as 67 % with an open tube quartz reactor without the use of a catalyst at residence times ∼4 s. The open tube reactor design promotes simplicity, low cost, and negligible coke formation. Pristine quartz tubes were most effective, since coke formation was detected when defects were introduced by scratching the surface of the quartz. Surprisingly, the addition of solids to the quartz tube, such as quartz sand, alumina powder, or even Pt-based intermetallic catalysts, led to lower ethylene yield. Pt alloy catalysts are effective at lower temperatures, such as at 575 °C, but conversion is limited due to thermodynamic constraints. When operated at industrially relevant temperatures, such as 700 °C and above, these catalysts were not stable in our tests, causing ethylene yield to drop below that of the open tube. These results suggest that future research on non-oxidative dehydrogenation should be directed at optimizing reactor designs to improve the conversion of ethane to ethylene, since this approach shows promise for decentralized production of ethylene from natural gas deposits.

More Details
4 Results
4 Results