Publications

Results 1–25 of 103

Search results

Jump to search filters

Multiple Pathways of Influence for Tightly and Loosely Structured Organizations: Implications for Systems Resilience

INCOSE International Symposium

Valdez, Raquel; Caskey, Susan; Gunda, Thushara

Organizations play a key role in supporting various societal functions, ranging from environmental governance to the manufacturing of goods. Here, the behaviors of organization are impacted by various influences, including information, technology, authority, economic leverage, historical experiences, and external factors, such as regulations. This paper introduces a generalized framework, focused on the relative structure of an organization (tight vs. loose), that can be used to understand how different influence pathways can impact decision-making within differently structured organizations. This generalized framework is then translated into a modeling and simulation platform to support and assess implications of these structural differences in resilience to disinformation (measured by organizational behaviors of timeliness and inclusion of quality information) using a systems dynamics approach Preliminary results indicate that a tightly structured organization may be less timely at processing information but could be more resilient against using poor quality information in organizational decisions compared to a loosely structured organization. Ongoing work is underway to understand the robustness of these findings and to validate current model design activities with empirical insights.

More Details

Enterprise: Exploration of Concepts, Perspectives and Implications for Systems Engineering

INCOSE International Symposium

Caskey, Susan; Keating, Charles B.; Katina, Polinpapilinho F.; Bradley, Joseph M.; Hodge, Richard; Martin, James N.

The purpose of this paper is to explore the concept of ‘enterprise’ in the context of Systems Engineering (SE). The term ‘enterprise’ has been used extensively to generally describe large complex entities that have an extensive scope of operations. However, a deeper examination of ‘enterprise’ significance for SE can provide insights as our challenges continue with increasingly complex, uncertain, ambiguous, and integrated entities struggling to thrive in the future. The paper explores three central topics. First, the concept of enterprise is introduced as a central aspect of the future focus for SE, as recognized in the INCOSE SE Vision 2035. Second, a more detailed examination of the enterprise concept is developed in relationship to SE. The thrust of this examination is to understand the nature and role of ‘enterprise’ across a broad spectrum of literature and knowledge, ultimately providing a more informed perspective of enterprise for SE. As part of this exploration, a bibliometric analysis of the term ‘enterprise’ is performed. This exploration extracts key themes (clusters) in the ‘enterprise’ literature. Third, challenges for further development and inculcation of ‘enterprise’ within the SE discipline and support for realization of the SE 2035 Vision are suggested. These challenges point out the need to ‘think differently’ about ‘enterprise’ within the SE context. ‘Enterprise’ is proposed as a central, albeit different, perspective for the SE discipline. Finally, the paper closes with a first–generation perspective for ‘enterprise’ in pursuit of the SE Vision 2035.

More Details

LDRD23-0730: Invoking Multilayer Networks to Develop a Paradigm for Security Science—Summary Report

Williams, Adam D.; Birch, Gabriel C.; Caskey, Susan; Fleming, Elizabeth S.; Mayle, Ashley N.; Adams, Thomas; Gailliot, Samuel F.; Stverak, Jami M.

Current approaches to securing high consequence facilities (HCF) and critical assets are linear and static and therefore struggle to adapt to emerging threats (e.g., unmanned aerial systems) and changing environmental conditions (e.g., decreasing operational control). The pace of change in technological, organizational, societal, and political dynamics necessitates a move toward codifying underlying scientific principles to better characterize the rich interactions observed between HCF security technology, infrastructure, digital assets, and human or organizational components. The promising results of Laboratory Directed Research and Development (LDRD) 20-0373—“Developing a Resilient, Adaptive, and Systematic Paradigm for Security Analysis”—suggest that when compared to traditional security analysis, invoking multilayer network (MLN) modeling for HCF security system components captures unexpected failure cases and unanticipated interactions.

More Details

Organizational System Resilience to Disinformation: A Viable Systems Model Exploration

INCOSE International Symposium

Caskey, Susan; Gunda, Thushara

This paper explores the utility of organizational system modeling frameworks to provide valuable insight into information flows within organizations and subsequently the opportunities for increasing resilience against disinformation campaigns targeting the system's ability to utilize information within its decision making. Disinformation is a growing challenge for many organizations and in recent years has created delay in decision making. Here the paper has utilized the viable systems model (VSM) to characterize organizational systems and used this approach to outline potential subsystem requirements to promote resilience of the system. The results of this paper can support the development of simulations and models considering the human elements within the system as well as support the development of quantitative measures of resilience.

More Details

Computational Fluid Dynamics Simulations to Assess Spatial Variability and Optimal Ventilation Scenarios for Biological Laboratory Exposures

Applied Biosafety

Caskey, Susan; Ho, Clifford K.; Burnett, Louann C.; Jouravel, Natalie; Branda, Catherine; Fruetel, Julia A.

A significant amount of uncertainty exists regarding potential human exposure to laboratory biomaterials and organisms in Biosafety Level 2 (BSL-2) research laboratories. Computational fluid dynamics (CFD) modeling is proposed as a way to better understand potential impacts of different combinations of biomaterials, laboratory manipulations, and exposure routes on risks to laboratory workers. Here, in this study, we use CFD models to simulate airborne concentrations of contaminants in an actual BSL-2 laboratory under different configurations. Results show that ventilation configuration, sampling location, and contaminant source location can significantly impact airborne concentrations and exposures. Depending on the source location and airflow patterns, the transient and time-integrated concentrations varied by several orders of magnitude. Contaminant plumes from sources located near a return vent (or exhaust like a fume hood or ventilated biosafety cabinet) are likely to be more contained than sources that are further from the exhaust. Having a direct flow between the source and the exhaust (through-flow condition) may reduce potential exposures to individuals outside the air flow path. Designing a BSL-2 room with ventilation and airflow patterns that maximize through-flow conditions to the return/exhaust vents and minimize dispersion and mixing throughout the room is, therefore, recommended. CFD simulations can also be used to assist in characterizing the impacts of supply and return vent locations, room layout, and source locations on spatial and temporal contaminant concentrations. In addition, proper placement of particle sensors can also be informed by CFD simulations to provide additional characterization and monitoring of potential exposures in BSL-2 facilities.

More Details

Revisiting Current Paradigms: Subject Matter Expert Views on High Consequence Facility Security Assessments

Journal of Nuclear Materials Management

Gunda, Thushara; Caskey, Susan; Williams, Adam D.; Birch, Gabriel C.

Security assessments support decision-makers' ability to evaluate current capabilities of high consequence facilities (HCF) to respond to possible attacks. However, increasing complexity of today's operational environment requires a critical review of traditional approaches to ensure that implemented assessments are providing relevant and timely insights into security of HCFs. Using interviews and focus groups with diverse subject matter experts (SMEs), this study evaluated the current state of security assessments and identified opportunities to achieve a more "ideal" state. The SME-based data underscored the value of a systems approach for understanding the impacts of changing operational designs and contexts (as well as cultural influences) on security to address methodological shortcomings of traditional assessment processes. These findings can be used to inform the development of new approaches to HCF security assessments that are able to more accurately reflect changing operational environments and effectively mitigate concerns arising from new adversary capabilities.

More Details

Application of Resilience Theory to Organizations Subject to Disinformation Campaigns

2022 Resilience Week, RWS 2022 - Proceedings

Wachtel, Amanda; Caskey, Susan; Gunda, Thushara; Keller, Elizabeth

Community, corporate, and government organizations are being targeted by disinformation attacks at an unprecedented rate. These attacks interrupt the ability of organizations to make high-consequence decisions and can lower their confidence in datasets and analytics. New interdisciplinary research approaches are being actively developed to expand resilience theory applications to organizations, and to determine the metrics and mitigations needed to increase resilience against disinformation. This paper presents initial ideas on adapting resilience methodologies for organizations and disinformation, highlighting key areas that require further exploration in this emerging field of research.

More Details
Results 1–25 of 103
Results 1–25 of 103