A colinear Second-Harmonic Orthogonal Polarized (SHOP) interferometer diagnostic capable of making electron areal density measurements of plasmas formed in Magnetically Insulated Transmission Lines (MITLs) has been developed.
The Z accelerator at Sandia National Laboratories conducts z-pinch experiments at 26 MA in support of DOE missions in stockpile stewardship, dynamic materials, fusion, and other basic sciences. Increasing the current delivered to the z-pinch would extend our reach in each of these disciplines. To achieve increases in current and accelerator efficiency, a fraction of Z’s shots are set aside for research into transmission-line power flow. These shots, with supporting simulations and theory, are incorporated into this Advanced Diagnostics milestone report. The efficiency of Z is reduced as some portion of the total current is shunted across the transmission-line gaps prior to the load. This is referred to as “current loss”. Electrode plasmas have long been implicated in this process, so the bulk of dedicated power-flow experiments are designed to measure the plasma environment. The experimental analyses are enhanced by simulations conducted using realistic hardware and Z voltage pulses. In the same way that diagnostics are continually being improved for sensitivity and resolution, the modeling capability is continually being improved to provide faster and more realistic simulations. The specifics of the experimental hardware, diagnostics, simulations, and algorithm developments are provided in this report. The combined analysis of simulation and data confirms that electrode plasmas have the most detrimental impact on current delivery. Experiments over the last three years have tested the theoretical current-loss mechanisms of enhanced ion current, plasma gap closure, and Hall-related current. These mechanisms are not mutually exclusive and may be coincident in the final feed as well as in upstream transmission lines. The final-feed geometries tested here, however, observe lower-density plasmas without dominant ion currents which is consistent with a Hall-related current. The picture of plasma formation and transport formed from experiment and simulation is informing hardware designs being fielded on Z now and being proposed for the Next-Generation Pulsed Power (NGPP) facility. In this picture, the strong magnetic fields that heat the electrodes above particle emission thresholds also confine the charged particles near the surface. Some portion of the plasmas thus formed is transported into the transmission-line gap under the force of the electric field, with aid from plasma instabilities. The gap plasmas are then transported towards the load by a cross-field drift, where they accumulate and contribute to a likely Hall-related cross-gap current. The achievements in experimental execution, model validation, and physical analysis presented in this report set the stage for continued progress in power flow and load diagnostics on Z. The planned shot schedule for Z and Mykonos will provide data for extrapolation to higher current to ensure the predicted performance and efficiency of a NGPP facility.
Experimental measurements of low density plasmas forming in Magnetically Insulated Transmission Line (MITL) regions are desired to improve our understanding of current loss and power flow. Therefore, a new optical interferometer diagnostic was commissioned via this LDRD project. To measure the expected 1013 - 1017 cm-3 electron densities inside the 0.5 - 6 mm Anode-Cathode (A-K) gaps, a colinear SHOP interferometer diagnostic was constructed. The diagnostic was initially fielded on the University of New Mexico (UNM) Helicon-Cathode (HelCat) plasma device which provided a highly repeatable and well understood plasma source for which the colinear SHOP interferometer’s functionality could be verified and measured. Utilizing the highly repeatable plasma source and shot averaging, the interferometer was able to achieve an areal density sensitivity of 1×1014 cm-2. This work at UNM lead to a Review of Scientific Instruments (RSI) publication [20], DOI:10.1063/5.0101687. After the diagnostic’s capability was proven at UNM, the colinear SHOP interferometer was commissioned for use on the Sandia National Laboratories (SNL) Mykonos accelerator. Here, it provided the first temporal areal density measurements of plasma formation in a parallel plate MITL. The diagnostic was able to achieve a single shot (no multi-shot averaging like at UNM) areal density sensitivity of 1×1015 cm-2 along a ~ 2mm probing path length, which provided adequate capability to conduct fundamental physics research of MITL plasma formation. CHICAGO and ALEGRA simulations support the diagnostics experimental findings. More experimental and computational work will continue, likely leading to another publication(s). The smaller scale Mykonos accelerator work has also provided justification that the colinear SHOP interferometer is a capable diagnostic for measuring plasma areal densities in the inner MITL and convolute regions of larger TW-class accelerators like SNL’s Z machine.
We present an overview of the magneto-inertial fusion (MIF) concept MagLIF (Magnetized Liner Inertial Fusion) pursued at Sandia National Laboratories and review some of the most prominent results since the initial experiments in 2013. In MagLIF, a centimeter-scale beryllium tube or "liner" is filled with a fusion fuel, axially pre-magnetized, laser pre-heated, and finally imploded using up to 20 MA from the Z machine. All of these elements are necessary to generate a thermonuclear plasma: laser preheating raises the initial temperature of the fuel, the electrical current implodes the liner and quasi-adiabatically compresses the fuel via the Lorentz force, and the axial magnetic field limits thermal conduction from the hot plasma to the cold liner walls during the implosion. MagLIF is the first MIF concept to demonstrate fusion relevant temperatures, significant fusion production (>10^13 primary DD neutron yield), and magnetic trapping of charged fusion particles. On a 60 MA next-generation pulsed-power machine, two-dimensional simulations suggest that MagLIF has the potential to generate multi-MJ yields with significant self-heating, a long-term goal of the US Stockpile Stewardship Program. At currents exceeding 65 MA, the high gains required for fusion energy could be achievable.
The Z Machine at Sandia National Laboratories uses current pulses with peaks up to 27 MA to drive target implosions and generate high energy density conditions of interest for stockpile stewardship programs pertinent to the NNSA program portfolio . Physical processes in the region near the Z Machine target create electrode plasmas which seed parasitic current loss that reduce the performance and output of a Z experiment. Electrode surface contaminants (hydrogen, water, hydrocarbons) are thought to be the primary constituent of electrode plasmas which contribute to loss mechanisms. The Sandia team explore d in situ heating and plasma discharge techniques by integrating requisite infrastructure into Sandia's Mykonos LTD accelerator, addressing potential impacts to accelerator operation, and reporting on the impact of these techniques on electrode plasma formation and shot performance. The in situ discharge cleaning utilizes the electrodes of the accelerator to excite an argon-oxygen plasma to sputter and chemically react contaminants from electrode surfaces. Insulating breaks are required to isolate the plasma in electrode regions where loss processes are most likely to occur. The shots on Mykonos validate that these breaks do not perturb experiment performance, reducing the uncertainty on the largest unknown about the in situ cleaning system. Preliminary observations with electrical and optical diagnostics suggest that electrode plasma formation is delayed, and overall inventory has been substantively reduced. In situ heating embeds cartridge heaters into accelerator electrodes and employs a thermal bakeout to rapidly desorb contaminants from electrode surfaces. For the first time, additively manufactured (AM) electrode assemblies were used on a low impedance accelerator to integrate cooling channels and manage thermal gradients. Challenges with poor supplier fabrication to specifications, load alignment, thermal expansion and hardware movement and warpage appears to have introduced large variability in observed loss, though, preventing strong assertions of loss reduction via in situ heating. At this time, an in situ discharge cleaning process offers the lowest risk path to reduce electrode contaminant inventories on Z, though we recommend continuing to develop both approaches. Additional engineering and testing are required to improve the implementation of both systems. .
We present an overview of the design and development of optical self-emission and debris imaging diagnostics for the Z Machine at Sandia National Laboratories. These diagnostics were designed and implemented to address several gaps in our understanding of visibly emitting phenomenon on Z and the post-shot debris environment. Optical emission arises from plasmas that form on the transmission line that delivers energy to Z loads and on the Z targets themselves; however, the dynamics of these plasmas are difficult to assess without imaging data. Addressing this, we developed a new optical imager called SEGOI (Self-Emission Gated Optical Imager) that leverages the eight gated optical imagers and two streak cameras of the Z Line VISAR system. SEGOI is a low cost, side-on imager with a 1 cm field of view and 30-50 µm spatial resolution, sensitive to green light (540-600 nm). This report outlines the design considerations and development of this diagnostic and presents an overview of the first diagnostic data acquired from four experimental campaigns. SEGOI was fielded on power flow experiments to image plasmas forming on and between transmission lines, on an inertial confinement fusion experiment called the Dynamic Screw Pinch to image low density plasmas forming on return current posts, on an experiment designed to measure the magneto Rayleigh-Taylor instability to image the instability bubble trajectory and self-emission structures, and finally on a Magnetized Liner Inertial Fusion (MagLIF) experiment to image the emission from the target. The second diagnostic developed, called DINGOZ (Debris ImagiNG on Z), was designed to improve our understanding of the post-shot debris environment. DINGOZ is an airtight enclosure that houses electronics and batteries to operate a high-speed (10-400 kfps) camera in the Z Machine center section. We report on the design considerations of this new diagnostic and present the first high-speed imaging data of the post-shot debris environment on Z.