Publications

Results 1–25 of 332

Search results

Jump to search filters

Sources of error and methods to improve accuracy in interface state density analysis using quasi-static capacitance-voltage measurements in wide bandgap semiconductors

Journal of Applied Physics

Rummel, Brian; Cooper, J.A.; Morisette, D.T.; Yates, Luke Y.; Glaser, Caleb E.; Binder, Andrew B.; Ramadoss, K.; Kaplar, Robert K.

Characterizing interface trap states in commercial wide bandgap devices using frequency-based measurements requires unconventionally high probing frequencies to account for both fast and slow traps associated with wide bandgap materials. The C − ψ S technique has been suggested as a viable quasi-static method for determining the interface trap state densities in wide bandgap systems, but the results are shown to be susceptible to errors in the analysis procedure. This work explores the primary sources of errors present in the C − ψ S technique using an analytical model that describes the apparent response for wide bandgap MOS capacitor devices. Measurement noise is shown to greatly impact the linear fitting routine of the 1 / C S ∗ 2 vs ψ S plot to calibrate the additive constant in the surface potential/gate voltage relationship, and an inexact knowledge of the oxide capacitance is also shown to impede interface trap state analysis near the band edge. In addition, a slight nonlinearity that is typically present throughout the 1 / C S ∗ 2 vs ψ S plot hinders the accurate estimation of interface trap densities, which is demonstrated for a fabricated n-SiC MOS capacitor device. Methods are suggested to improve quasi-static analysis, including a novel method to determine an approximate integration constant without relying on a linear fitting routine.

More Details

Gate protection for vertical gallium nitride trench MOSFETs: The buried field shield ☆

e-Prime - Advances in Electrical Engineering, Electronics and Energy

Binder, Andrew B.; Cooper, James A.; Steinfeldt, Jeffrey A.; Allerman, A.A.; Laros, James H.; Yates, Luke Y.; Kaplar, Robert K.

This paper describes a process for forming a buried field shield in GaN by an etch-and-regrowth process, which is intended to protect the gate dielectric from high fields in the blocking state. GaN trench MOSFETs made at Sandia serve as the baseline to show the limitations in making a trench gated device without a method to protect the gate dielectric. Device data coupled with simulations show device failure at 30% of theoretical breakdown for devices made without a field shield. Implementation of a field shield reduces the simulated electric field in the dielectric to below 4 MV/cm at breakdown, which eliminates the requirement to derate the device in order to protect the dielectric. For realistic lithography tolerances, however, a shield-to-channel distance of 0.4 μm limits the field in the gate dielectric to 5 MV/cm and requires a small margin of device derating to safeguard a long-term reliability and lifetime of the dielectric.

More Details

AlGaN High Electron Mobility Transistor for High-Temperature Logic

Journal of Microelectronics and Electronic Packaging

Klein, Brianna A.; Allerman, A.A.; Baca, A.G.; Nordquist, Christopher N.; Armstrong, Andrew A.; Van Heukelom, Michael V.; Rice, Anthony R.; Patel, Victor J.; Rosprim, Mary R.; Caravello, Lisa N.; Laros, James H.; Pipkin, Jennifer R.; Abate, Vincent M.; Kaplar, Robert K.

Here we report on AlGaN high electron mobility transistor (HEMT)-based logic development, using combined enhancement- and depletion-mode transistors to fabricate inverters with operation from room temperature up to 500°C. Our development approach included: (a) characterizing temperature-dependent carrier transport for different AlGaN HEMT heterostructures, (b) developing a suitable gate metal scheme for use in high temperatures, and (c) over-temperature testing of discrete devices and inverters. Hall mobility data (from 30°C to 500°C) revealed the reference GaN-channel HEMT experienced a 6.9x reduction in mobility, whereas the AlGaN channel HEMTs experienced about a 3.1x reduction. Furthermore, a greater aluminum contrast between the barrier and channel enabled higher carrier densities in the two-dimensional electron gas for all temperatures. The combination of reduced variation in mobility with temperature and high sheet carrier concentration showed that an Al-rich AlGaN-channel HEMT with a high barrier-to-channel aluminum contrast is the best option for an extreme temperature HEMT design. Three gate metal stacks were selected for low resistivity, high melting point, low thermal expansion coefficient, and high expected barrier height. The impact of thermal cycling was examined through electrical characterization of samples measured before and after rapid thermal anneal. The 200-nm tungsten gate metallization was the top performer with minimal reduction in drain current, a slightly positive threshold voltage shift, and about an order of magnitude advantage over the other gates in on-to-off current ratio. After incorporating the tungsten gate metal stack in device fabrication, characterization of transistors and inverters from room temperature up to 500°C was performed. The enhancement-mode (e-mode) devices’ resistance started increasing at about 200°C, resulting in drain current degradation. This phenomenon was not observed in depletion-mode (d-mode) devices but highlights a challenge for inverters in an e-mode driver and d-mode load configuration.

More Details

System Integration Analysis for Modular Solid-State Substations

Mueller, Jacob M.; Kaplar, Robert K.; Flicker, Jack D.; Garcia Rodriguez, Luciano A.; Binder, Andrew B.; Ropp, Michael E.; Gill, Lee G.; Palacios, Felipe N.; Rashkin, Lee; Dow, Andrew R.; Elliott, Ryan T.

Structural modularity is critical to solid-state transformer (SST) and solid-state power substation (SSPS) concepts, but operational aspects related to this modularity are not yet fully understood. Previous studies and demonstrations of modular power conversion systems assume identical module compositions, but dependence on module uniformity undercuts the value of the modular framework. In this project, a hierarchical control approach was developed for modular SSTs which achieves system-level objectives while ensuring equitable power sharing between nonuniform building block modules. This enables module replacements and upgrades which leverage circuit and device technology advancements to improve system-level performance. The functionality of the control approach is demonstrated in detailed time-domain simulations. Results of this project provide context and strategic direction for future LDRD projects focusing on technologies supporting the SST crosscut outcome of the resilient energy systems mission campaign.

More Details
Results 1–25 of 332
Results 1–25 of 332