Laboratory Observations of Hydrogen Balmer Line Profiles
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Astrophysical Journal
White dwarfs (WDs) are useful across a wide range of astrophysical contexts. The appropriate interpretation of their spectra relies on the accuracy of WD atmosphere models. One essential ingredient of atmosphere models is the theory used for the broadening of spectral lines. To date, the models have relied on Vidal et al., known as the unified theory of line broadening (VCS). There have since been advancements in the theory; however, the calculations used in model atmosphere codes have only received minor updates. Meanwhile, advances in instrumentation and data have uncovered indications of inaccuracies: spectroscopic temperatures are roughly 10% higher and spectroscopic masses are roughly 0.1 M higher than their photometric counterparts. The evidence suggests that VCS-based treatments of line profiles may be at least partly responsible. Gomez et al. developed a simulation-based line-profile code Xenomorph using an improved theoretical treatment that can be used to inform questions around the discrepancy. However, the code required revisions to sufficiently decrease noise for use in model spectra and to make it computationally tractable and physically realistic. In particular, we investigate three additional physical effects that are not captured in the VCS calculations: ion dynamics, higher-order multipole expansion, and an expanded basis set. We also implement a simulation-based approach to occupation probability. The present study limits the scope to the first three hydrogen Balmer transitions (Hα, Hβ, and Hγ). We find that screening effects and occupation probability have the largest effects on the line shapes and will likely have important consequences in stellar synthetic spectra.
Frontiers in Astronomy and Space Sciences
For isolated white dwarf (WD) stars, fits to their observed spectra provide the most precise estimates of their effective temperatures and surface gravities. Even so, recent studies have shown that systematic offsets exist between such spectroscopic parameter determinations and those based on broadband photometry. These large discrepancies (10% in Teff, 0.1 M⊙ in mass) provide scientific motivation for reconsidering the atomic physics employed in the model atmospheres of these stars. Recent simulation work of ours suggests that the most important remaining uncertainties in simulation-based calculations of line shapes are the treatment of 1) the electric field distribution and 2) the occupation probability (OP) prescription. We review the work that has been done in these areas and outline possible avenues for progress.
Abstract not provided.
Physical Review Letters
Understanding how atoms interact with hot dense matter is essential for astrophysical and laboratory plasmas. Interactions in high-density plasmas broaden spectral lines, providing a rare window into interactions that govern, for example, radiation transport in stars. However, up to now, spectral line-shape theories employed at least one of three common approximations: second-order Taylor treatment of broadening operator, dipole-only interactions between atom and plasma, and classical treatment of perturbing electrons. In this Letter, we remove all three approximations simultaneously for the first time and test the importance for two applications: neutral hydrogen and highly ionized magnesium and oxygen. We found 15%-50% change in the spectral line widths, which are sufficient to impact applications including white-dwarf mass determination, stellar-opacity research, and laboratory plasma diagnostics.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physics of Plasmas
White Dwarf (WD) stars are the most common stellar remnant in the universe. WDs usually have a hydrogen or helium atmosphere, and helium WD (called DB) spectra can be used to solve outstanding problems in stellar and galactic evolution. DB origins, which are still a mystery, must be known to solve these problems. DB masses are crucial for discriminating between different proposed DB evolutionary hypotheses. Current DB mass determination methods deliver conflicting results. The spectroscopic mass determination method relies on line broadening models that have not been validated at DB atmosphere conditions. We performed helium benchmark experiments using the White Dwarf Photosphere Experiment (WDPE) platform at Sandia National Laboratories' Z-machine that aims to study He line broadening at DB conditions. Using hydrogen/helium mixture plasmas allows investigating the importance of He Stark and van der Waals broadening simultaneously. Accurate experimental data reduction methods are essential to test these line-broadening theories. In this paper, we present data calibration methods for these benchmark He line shape experiments. We give a detailed account of data processing, spectral power calibrations, and instrument broadening measurements. Uncertainties for each data calibration step are also derived. We demonstrate that our experiments meet all benchmark experiment accuracy requirements: WDPE wavelength uncertainties are <1 Å, spectral powers can be determined to within 15%, densities are accurate at the 20% level, and instrumental broadening can be measured with 20% accuracy. Fulfilling these stringent requirements enables WDPE experimental data to provide physically meaningful conclusions about line broadening at DB conditions.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Images and lineout data are shown for shot z3404.
Abstract not provided.
Abstract not provided.
Abstract not provided.