Publications

Results 1–25 of 392

Search results

Jump to search filters

Development of a colinear Second-Harmonic Orthogonally Polarized (SHOP) interferometer for line-averaged electron density measurements in Magnetically Insulated Transmission Lines [Slides]

Hines, Nathan R.; Awe, Thomas J.; Schwarz, Jens; Patel, Sonal G.; Laity, George R.; Lamppa, Derek C.; Gilmore, Mark A.; Reyes, Pablo A.; Scoglietti, Daniel J.; Rose, David V.; Armstrong, Darrell J.; Bliss, David E.; Cuneo, Michael E.

A colinear Second-Harmonic Orthogonal Polarized (SHOP) interferometer diagnostic capable of making electron areal density measurements of plasmas formed in Magnetically Insulated Transmission Lines (MITLs) has been developed.

More Details

MRT 7365: Power flow physics and key physics phenomena

Bennett, Nichelle L.; Lamppa, Derek C.; Porwitzky, Andrew J.; Jennings, Christopher A.; Evstatiev, Evstati G.; Chandler, Katherine M.; Banasek, Jacob T.; Patel, Sonal G.; Yager-Elorriaga, David A.; Savage, Mark E.; Johnston, Mark D.; Hess, Mark H.; Cuneo, Michael E.; Welch, Dale; Rose, David; Watson, Eric; Myers, Clayton

The Z accelerator at Sandia National Laboratories conducts z-pinch experiments at 26 MA in support of DOE missions in stockpile stewardship, dynamic materials, fusion, and other basic sciences. Increasing the current delivered to the z-pinch would extend our reach in each of these disciplines. To achieve increases in current and accelerator efficiency, a fraction of Z’s shots are set aside for research into transmission-line power flow. These shots, with supporting simulations and theory, are incorporated into this Advanced Diagnostics milestone report. The efficiency of Z is reduced as some portion of the total current is shunted across the transmission-line gaps prior to the load. This is referred to as “current loss”. Electrode plasmas have long been implicated in this process, so the bulk of dedicated power-flow experiments are designed to measure the plasma environment. The experimental analyses are enhanced by simulations conducted using realistic hardware and Z voltage pulses. In the same way that diagnostics are continually being improved for sensitivity and resolution, the modeling capability is continually being improved to provide faster and more realistic simulations. The specifics of the experimental hardware, diagnostics, simulations, and algorithm developments are provided in this report. The combined analysis of simulation and data confirms that electrode plasmas have the most detrimental impact on current delivery. Experiments over the last three years have tested the theoretical current-loss mechanisms of enhanced ion current, plasma gap closure, and Hall-related current. These mechanisms are not mutually exclusive and may be coincident in the final feed as well as in upstream transmission lines. The final-feed geometries tested here, however, observe lower-density plasmas without dominant ion currents which is consistent with a Hall-related current. The picture of plasma formation and transport formed from experiment and simulation is informing hardware designs being fielded on Z now and being proposed for the Next-Generation Pulsed Power (NGPP) facility. In this picture, the strong magnetic fields that heat the electrodes above particle emission thresholds also confine the charged particles near the surface. Some portion of the plasmas thus formed is transported into the transmission-line gap under the force of the electric field, with aid from plasma instabilities. The gap plasmas are then transported towards the load by a cross-field drift, where they accumulate and contribute to a likely Hall-related cross-gap current. The achievements in experimental execution, model validation, and physical analysis presented in this report set the stage for continued progress in power flow and load diagnostics on Z. The planned shot schedule for Z and Mykonos will provide data for extrapolation to higher current to ensure the predicted performance and efficiency of a NGPP facility.

More Details

Development of a colinear Second-Harmonic Orthogonal Polarization (SHOP) interferometer for electron areal density measurements in Magnetically Insulated Transmission Lines (MITLs)

Hines, Nathan R.; Awe, Thomas J.; Schwarz, Jens; Patel, Sonal G.; Lamppa, Derek C.; Rose, David V.; Reyes, Pablo A.; Scoglietti, Daniel J.; Gilmore, Mark A.; Laity, George R.; Armstrong, Darrell J.; Bliss, David E.; Cuneo, Michael E.

Experimental measurements of low density plasmas forming in Magnetically Insulated Transmission Line (MITL) regions are desired to improve our understanding of current loss and power flow. Therefore, a new optical interferometer diagnostic was commissioned via this LDRD project. To measure the expected 1013 - 1017 cm-3 electron densities inside the 0.5 - 6 mm Anode-Cathode (A-K) gaps, a colinear SHOP interferometer diagnostic was constructed. The diagnostic was initially fielded on the University of New Mexico (UNM) Helicon-Cathode (HelCat) plasma device which provided a highly repeatable and well understood plasma source for which the colinear SHOP interferometer’s functionality could be verified and measured. Utilizing the highly repeatable plasma source and shot averaging, the interferometer was able to achieve an areal density sensitivity of 1×1014 cm-2. This work at UNM lead to a Review of Scientific Instruments (RSI) publication [20], DOI:10.1063/5.0101687. After the diagnostic’s capability was proven at UNM, the colinear SHOP interferometer was commissioned for use on the Sandia National Laboratories (SNL) Mykonos accelerator. Here, it provided the first temporal areal density measurements of plasma formation in a parallel plate MITL. The diagnostic was able to achieve a single shot (no multi-shot averaging like at UNM) areal density sensitivity of 1×1015 cm-2 along a ~ 2mm probing path length, which provided adequate capability to conduct fundamental physics research of MITL plasma formation. CHICAGO and ALEGRA simulations support the diagnostics experimental findings. More experimental and computational work will continue, likely leading to another publication(s). The smaller scale Mykonos accelerator work has also provided justification that the colinear SHOP interferometer is a capable diagnostic for measuring plasma areal densities in the inner MITL and convolute regions of larger TW-class accelerators like SNL’s Z machine.

More Details

Electrode plasma formation and melt in Z-pinch accelerators

Physical Review Accelerators and Beams

Bennett, Nichelle L.; Welch, D.R.; Cochrane, Kyle; Leung, Kevin; Thoma, C.; Cuneo, Michael E.; Foulk, James W.

Recent studies of power flow and particle transport in multi-MA pulsed-power accelerators demonstrate that electrode plasmas may reduce accelerator efficiency by shunting current upstream from the load. The detailed generation and evolution of these electrode plasmas are examined here using fully relativistic, Monte Carlo particle-in-cell (PIC) and magnetohydrodynamic (MHD) simulations over a range of peak currents (8–48 MA). The PIC calculations, informed by vacuum science, describe the electrode surface breakdown and particle transport prior to electrode melt. The MHD calculations show the bulk electrode evolution during melt. The physical description provided by this combined study begins with the rising local magnetic field that increases the local electrode surface temperature. This initiates the thermal desorption of contaminants from the electrode surface, with contributions from atoms outgassing from the bulk metal. The contaminants rapidly ionize forming a 1015-1018 cm-3 plasma that is effectively resistive while weakly collisional because it is created within, and rapidly penetrated by, a strong magnetic field (> 30 T). Prior to melting, the density of this surface plasma is limited by the concentration of absorbed contaminants in the bulk (~1019 cm-3 for hydrogen), its diffusion, and ionization. Eventually, the melting electrodes form a conducting plasma (1021-1023 cm-3) that experiences j × B compression and a typical decaying magnetic diffusion profile. This physical sequence ignores the transport of collisional plasmas of 1019 cm-3 which may arise from electrode defects and associated instabilities. Nonetheless, this picture of plasma formation and melt may be extrapolated to higher-energy pulsed-power systems.

More Details

Understanding Electrode Plasma Formation on Wires and Thin Foils via Vacuum Ultraviolet Spectroscopy of Desorbed Surface Contaminants

IEEE International Conference on Plasma Science

Smith, Trevor J.; Johnston, Mark D.; Jordan, N.; Cuneo, Michael E.; Schwarz, Jens; Mcbride, R.

Power-flow studies on the 30-MA, 100-ns Z facility at Sandia National Labs have shown that plasmas in the facility's magnetically insulated transmission lines can result in a loss of current to the load.1 During the current pulse, electrode heating causes neutral surface contaminants (water, hydrogen, hydrocarbons, etc.) to desorb, ionize, and form plasmas in the anode-cathode gap.2 Shrinking typical electrode thicknesses (∼1 cm) to thin foils (5-200 μm) produces observable amounts of plasma on smaller pulsed power drivers <1 MA).3 We suspect that as electrode material bulk thickness decreases relative to the skin depth (50-100 μm for a 100-500-ns pulse in aluminum), the thermal energy delivered to the neutral surface contaminants increases, and thus desorb faster from the current carrying surface.

More Details

Domination of the K-Radiation at a Z-Pinch Stagnation on Z by Numerous Tiny Spots and the Properties of the Spots Inferred by Experimental Determination of the K-Line Opacities

IEEE International Conference on Plasma Science

Maron, Y.; Bernshtam, V.; Zarnitsky, Y.; Fisher, V.; Nedostup, O.; Ampleford, David J.; Jennings, Christopher A.; Jones, Brent M.; Cuneo, Michael E.; Rochau, G.A.; Dunham, G.S.; Loisel, Guillaume P.

Detailed analysis of both the line-intensity ratios and line shapes of the K-lines of elements of different abundances (Fe, Cr, Ni, and Mn) emitted from the stagnation of a steel wire-array implosion on Z, were used to determine the line opacities. While the opacities at the early time of stagnation appear to be consistent with a nearly uniform hot-plasma cylinder on-axis surrounded by a colder annulus, the opacities during the peak K-emission strongly suggest that the main K-emission is due to small hot regions (spots) spread over the stagnating column. The spots are shown to be at least 4× denser than expected based on a uniform-cylinder emission (namely, ni > 3 ×1020 cm-3 ), are of diameters of about 200 μ or less (where the smaller the spots the higher are the densities), and are thousands in number. The total mass of the spots was determined to be 3-10 % of the load mass, and their total volume 3-15 % of the O 1.2-mm stagnation-column volume, both are less than the respective values for the earlier period of lower K power.

More Details

Assessment of Electrode Contamination Mitigation at 0.5 MA Scale

Lamppa, Derek C.; Simpson, Sean; Hutsel, Brian T.; Cuneo, Michael E.; Laity, George R.; Rose, David V.

The Z Machine at Sandia National Laboratories uses current pulses with peaks up to 27 MA to drive target implosions and generate high energy density conditions of interest for stockpile stewardship programs pertinent to the NNSA program portfolio . Physical processes in the region near the Z Machine target create electrode plasmas which seed parasitic current loss that reduce the performance and output of a Z experiment. Electrode surface contaminants (hydrogen, water, hydrocarbons) are thought to be the primary constituent of electrode plasmas which contribute to loss mechanisms. The Sandia team explore d in situ heating and plasma discharge techniques by integrating requisite infrastructure into Sandia's Mykonos LTD accelerator, addressing potential impacts to accelerator operation, and reporting on the impact of these techniques on electrode plasma formation and shot performance. The in situ discharge cleaning utilizes the electrodes of the accelerator to excite an argon-oxygen plasma to sputter and chemically react contaminants from electrode surfaces. Insulating breaks are required to isolate the plasma in electrode regions where loss processes are most likely to occur. The shots on Mykonos validate that these breaks do not perturb experiment performance, reducing the uncertainty on the largest unknown about the in situ cleaning system. Preliminary observations with electrical and optical diagnostics suggest that electrode plasma formation is delayed, and overall inventory has been substantively reduced. In situ heating embeds cartridge heaters into accelerator electrodes and employs a thermal bakeout to rapidly desorb contaminants from electrode surfaces. For the first time, additively manufactured (AM) electrode assemblies were used on a low impedance accelerator to integrate cooling channels and manage thermal gradients. Challenges with poor supplier fabrication to specifications, load alignment, thermal expansion and hardware movement and warpage appears to have introduced large variability in observed loss, though, preventing strong assertions of loss reduction via in situ heating. At this time, an in situ discharge cleaning process offers the lowest risk path to reduce electrode contaminant inventories on Z, though we recommend continuing to develop both approaches. Additional engineering and testing are required to improve the implementation of both systems. .

More Details
Results 1–25 of 392
Results 1–25 of 392