Publications

24 Results

Search results

Jump to search filters

Developing and applying quantifiable metrics for diagnostic and experiment design on Z

Laros, James H.; Knapp, Patrick F.; Beckwith, Kristian B.; Evstatiev, Evstati G.; Fein, Jeffrey R.; Jennings, Christopher A.; Joseph, Roshan; Klein, Brandon T.; Maupin, Kathryn A.; Nagayama, Taisuke N.; Patel, Ravi G.; Schaeuble, Marc-Andre S.; Vasey, Gina; Ampleford, David A.

This project applies methods in Bayesian inference and modern statistical methods to quantify the value of new experimental data, in the form of new or modified diagnostic configurations and/or experiment designs. We demonstrate experiment design methods that can be used to identify the highest priority diagnostic improvements or experimental data to obtain in order to reduce uncertainties on critical inferred experimental quantities and select the best course of action to distinguish between competing physical models. Bayesian statistics and information theory provide the foundation for developing the necessary metrics, using two high impact experimental platforms on Z as exemplars to develop and illustrate the technique. We emphasize that the general methodology is extensible to new diagnostics (provided synthetic models are available), as well as additional platforms. We also discuss initial scoping of additional applications that began development in the last year of this LDRD.

More Details

Efficient kinetic particle simulations of space charge limited emission in magnetically insulated transmission lines using reduced physics models

Physical Review Accelerators and Beams

Evstatiev, Evstati G.; Hess, Mark H.

We explore the use of reduced physics models for efficient kinetic particle simulations of space charge limited (SCL) emission in inner magnetically insulated transmission lines (inner MITLs), with application to Sandia National Laboratories' Z machine. We propose a drift kinetic (guiding center) model of electron motion in place of a fully kinetic model and electrostatic-magnetostatic fields in place of electromagnetic fields. The validity of these approximations is suggested by the operational parameters of the Z machine, namely, current pulse lengths of order 100 ns compared with Larmor periods typically smaller than 10-11 s, typical Larmor radii of a few (tens) of microns (magnetic fields of tens to hundreds of Tesla) compared with MITL dimensions of a few centimeters, and transient time of light waves along the inner MITL of order a fraction of a nanosecond. Guiding center orbits eliminate the fast electron gyromotion, which enables the use of tens to hundreds of times larger time steps in the numerical particle advance. Electrostatic-magnetostatic fields eliminate the Courant-Friedrichs-Lewy (CFL) numerical stability limit on the time step and allow the use of higher grid resolutions or, alternatively, larger time steps in the fields advance. Overall, potential computational cost savings of tens to hundreds of times exists. The applicability of the reduced physics models is examined on two problems. First, in the simulation of space charge limited emission of electrons from the cathode surface due to high electric fields in a radial inner MITL geometry with a short load. In particular, it is shown that a drift kinetic-based particle-in-cell (PIC) model with electrostatic-magnetostatic fields is able to accurately reproduce well-known physics of electron vortex formation, spatially and temporally. Second, deeper understanding is gained of the mechanism behind vortex formation in this MITL geometry by considering an exemplar problem of an electron block of charge. This simpler setup reveals that the main mechanism of vortex formation can be attributed to pure drift motion of the electrons, that is, the (fully kinetic) gyromotion of the electrons is inessential to the process. This exemplar problem also suggests a correlation of the spatial dimensions of vortices to the thickness of the electron layer, as observed in SCL simulations. It also confirms that the electromagnetic nature of the fields does not play an essential role. Finally, an improved hybrid fully kinetic and drift kinetic model for electron motion is proposed, as means of capturing finite Larmor radius (FLR) effects; the particular FLR physics that is missed by the drift kinetic model is the particle-wall interaction. By initializing SCL emitted electrons as fully kinetic and later transitioning them to drift kinetic, according to simple criteria, the accuracy of SCL simulations can be improved, while preserving the potential for computational efficiency.

More Details

Efficient approach to kinetic simulation in the inner magnetically insulated transmission line on Z

Evstatiev, Evstati G.; Hess, Mark H.

This project explores the idea of performing kinetic numerical simulations in the Z inner magnetically insulated transmission line (inner MITL) by reduced physics models such as a guiding center drift kinetic approximation for particles and electrostatic and magnetostatic approximation for the fields. The basic problem explored herein is the generation, formation, and evolution of vortices by electron space charge limited (SCL) emission. The results indicate that for relevant to Z values of peak current and pulse length, these approximations are excellent, while also providing tens to hundreds of times reduction in the computational load. The benefits could be enormous: Implementation of these reduced physics models in present particle-in-cell (PIC) codes could enable them to be routinely used for experimental design while still capturing essential non-thermal (kinetic) physics.

More Details

Electron Dynamics within a MITL Containing a Load

IEEE Transactions on Plasma Science

Hess, Mark H.; Evstatiev, Evstati G.

In this article, we derive the vacuum electric fields within specific cylindrically symmetric magnetically insulated transmission lines (MITLs) in the limit of an infinite speed of light for an arbitrary time-dependent current. We focus our attention on two types of MITLs: the radial MITL and a spherically curved MITL. We then simulate the motion of charged particles, such as electrons, present in these MITLs due to the vacuum fields. In general, the motion of charged particles due to the vacuum fields is highly nonlinear since the fields are nonlinear functions of spatial coordinates and depend on an arbitrary time-dependent current drive. Using guiding center theory, however, one can describe the gross particle kinetics using a combination of $\textbf {E} \times \textbf {B}$ and $\nabla B$ drifts. In addition, we compare our approximate inner MITL field models and particle kinetics with those from a fully electromagnetic simulation code. We find that the agreement between the approximate model and the electromagnetic simulations is excellent.

More Details

Effects of Radiation Reaction Physics on High-Current Power Flow

Hess, Mark H.; Evstatiev, Evstati G.

In this study, we examine the effects of the radiation reaction force on electrons in a radial magnetically insulated transmission line (MITL) near a load with peak currents of 60+ MA. More specifically, we study the differences in electron motion and kinetic energy with or without radiation reaction physics using a novel guiding center drift approach that incorporates E $\times$ B and ∇B drifts. A key finding of this study is that an electron's magnetic moment, which would be conserved when radiation reaction physics is not incorporated, can be significantly reduced in magnetic fields on the order of 10,000's T when radiation reaction is included. The reduction of magnetic moment gives rise to a significant reduction in cycloidal kinetic energy as well as a reduction in the electron's ∇B drift.

More Details

Noise and error analysis and optimization in particle-based kinetic plasma simulations

Journal of Computational Physics

Evstatiev, Evstati G.; Finn, J.M.; Shadwick, B.A.; Hengartner, N.

In this paper we analyze the noise in macro-particle methods used in plasma physics and fluid dynamics, leading to approaches for minimizing the total error, focusing on electrostatic models in one dimension. We begin by describing kernel density estimation for continuous values of the spatial variable x, expressing the kernel in a form in which its shape and width are represented separately. The covariance matrix of the noise in the density is computed, first for uniform true density. The bandwidth of the covariance matrix C(x,y) is related to the width of the kernel. A feature that stands out is the presence of constant negative terms in the elements of the covariance matrix both on and off-diagonal. These negative correlations are related to the fact that the total number of particles is fixed at each time step; they also lead to the property ∫ C(x,y)dy = 0. We investigate the effect of these negative correlations on the electric field computed by Gauss's law, finding that the noise in the electric field is related to a process called the Ornstein-Uhlenbeck bridge, leading to a covariance matrix of the electric field with variance significantly reduced relative to that of a Brownian process. For non-constant density, p(x), still with continuous x, we analyze the total error in the density estimation and discuss it in terms of bias-variance optimization (BVO). For some characteristic length l, determined by the density and its second derivative, and kernel width h, having too few particles within h leads to too much variance; for h that is large relative to l, there is too much smoothing of the density. The optimum between these two limits is found by BVO. For kernels of the same width, it is shown that this optimum (minimum) is weakly sensitive to the kernel shape. Next, we repeat the analysis for x discretized on a grid. In this case the charge deposition rule is determined by a particle shape. An important property to be respected in the discrete system is the exact preservation of total charge on the grid; this property is necessary to ensure that the electric field is equal at both ends, consistent with periodic boundary conditions. Here, we find that if the particle shapes satisfy a partition of unity property, the particle charge deposited on the grid is conserved exactly. Further, if the particle shape is expressed as the convolution of a kernel with another kernel that satisfies the partition of unity, then the particle shape obeys the partition of unity. This property holds for kernels of arbitrary width, including widths that are not integer multiples of the grid spacing. Furthermore, we show results relaxing the approximations used to do BVO optimization analytically, by doing numerical computations of the total error as a function of the kernel width, on a grid in x. The comparison between numerical and analytical results shows good agreement over a range of particle shapes. We discuss the practical implications of our results, including the criteria for design and implementation of computationally efficient particle shapes that take advantage of the developed theory.

More Details

Towards Predictive Plasma Science and Engineering through Revolutionary Multi-Scale Algorithms and Models (Final Report)

Laity, George R.; Robinson, Allen C.; Cuneo, M.E.; Alam, Mary K.; Beckwith, Kristian B.; Bennett, Nichelle L.; Bettencourt, Matthew T.; Bond, Stephen D.; Cochrane, Kyle C.; Criscenti, Louise C.; Cyr, Eric C.; Laros, James H.; Drake, Richard R.; Evstatiev, Evstati G.; Fierro, Andrew S.; Gardiner, Thomas A.; Laros, James H.; Goeke, Ronald S.; Hamlin, Nathaniel D.; Hooper, Russell H.; Koski, Jason K.; Lane, James M.; Larson, Steven R.; Leung, Kevin L.; McGregor, Duncan A.; Miller, Philip R.; Miller, Sean M.; Ossareh, Susan J.; Phillips, Edward G.; Simpson, Sean S.; Sirajuddin, David S.; Smith, Thomas M.; Swan, Matthew S.; Thompson, Aidan P.; Tranchida, Julien G.; Bortz-Johnson, Asa J.; Welch, Dale R.; Russell, Alex M.; Watson, Eric D.; Rose, David V.; McBride, Ryan D.

This report describes the high-level accomplishments from the Plasma Science and Engineering Grand Challenge LDRD at Sandia National Laboratories. The Laboratory has a need to demonstrate predictive capabilities to model plasma phenomena in order to rapidly accelerate engineering development in several mission areas. The purpose of this Grand Challenge LDRD was to advance the fundamental models, methods, and algorithms along with supporting electrode science foundation to enable a revolutionary shift towards predictive plasma engineering design principles. This project integrated the SNL knowledge base in computer science, plasma physics, materials science, applied mathematics, and relevant application engineering to establish new cross-laboratory collaborations on these topics. As an initial exemplar, this project focused efforts on improving multi-scale modeling capabilities that are utilized to predict the electrical power delivery on large-scale pulsed power accelerators. Specifically, this LDRD was structured into three primary research thrusts that, when integrated, enable complex simulations of these devices: (1) the exploration of multi-scale models describing the desorption of contaminants from pulsed power electrodes, (2) the development of improved algorithms and code technologies to treat the multi-physics phenomena required to predict device performance, and (3) the creation of a rigorous verification and validation infrastructure to evaluate the codes and models across a range of challenge problems. These components were integrated into initial demonstrations of the largest simulations of multi-level vacuum power flow completed to-date, executed on the leading HPC computing machines available in the NNSA complex today. These preliminary studies indicate relevant pulsed power engineering design simulations can now be completed in (of order) several days, a significant improvement over pre-LDRD levels of performance.

More Details
24 Results
24 Results