Publications

7 Results

Search results

Jump to search filters

Reinforcement Learning Approach to Cybersecurity in Space (RELACSS)

Musuvathy, Srideep S.; Gomez Rivera, Abel O.; Bailey, Tyson; Verzi, Stephen J.; Sahakian, Meghan A.; Urias, Vincent; Gilley, Gabriel R.; Roy, Christopher C.

Securing satellite groundstations against cyber-attacks is vital to national security missions. However, these cyber threats are constantly evolving. As vulnerabilities are discovered and patched, new vulnerabilities are discovered and exploited. In order to automate the process of discovering existing vulnerabilities and the means to exploit them, a reinforcement learning framework is presented in this report. We demonstrate that this framework can learn to successfully navigate an unknown network and detect nodes of interest despite the presence of a moving target defense. The agent then exfiltrates a file of interest from the node as quickly as possible. This framework also incorporates a defensive software agent that learns to impede the attacking agents progress. This setup allows for the agents to work against each other and improve their abilities. We anticipate that this capability will help uncover unforeseen vulnerabilities and the means to mitigate them. The modular nature of the framework enables users to swap out learning algorithms and modify the reward functions in order to adapt the learning tasks to various use cases and environments. Several algorithms, viz., tabular Q learning, deep Q networks, proximal policy optimization, advantage actor-critic, generative adversarial imitation learning, are explored for the agents and the results highlighted. The agent learns to solve the tasks in a light-weight abstract environment. Once the agent learns to perform sufficiently well, it can be deployed in a minimega virtual machine environment (or a real network) with wrappers that map abstract actions to software commands. The agent also uses a local representation of the actions called a ‘slot-mechanism’. This allows the agent to learn in a certain network and generalize it to different networks. The defensive agent learns to predict the actions taken by an offensive agent and uses that information to anticipate the threat. This information can then either be used to raise an alarm or to take actions to thwart the attack. We believe that with the appropriate reward design, a representative environment, and action set, this framework can be generalized to tackle other cybersecurity tasks. By sufficiently training these agents, we can anticipate vulnerabilities leading to robust future designs. We can also deploy automated defensive agents that can help secure satellite groundstation and their vital national security missions.

More Details

Deep Reinforcement Learning for Online Distribution Power System Cybersecurity Protection

2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids, SmartGridComm 2021

Bailey, Tyson; Johnson, Jay; Levin, Drew

The sophistication and regularity of power system cybersecurity attacks has been growing in the last decade, leading researchers to investigate new innovative, cyber-resilient tools to help grid operators defend their networks and power systems. One promising approach is to apply recent advances in deep reinforcement learning (DRL) to aid grid operators in making real-time changes to the power system equipment to counteract malicious actions. While multiple transmission studies have been conducted in the past, in this work we investigate the possibility of defending distribution power systems using a DRL agent who has control of a collection of utility-owned distributed energy resources (DER). A game board using a modified version of the IEEE 13-bus model was simulated using OpenDSS to train the DRL agent and compare its performance to a random agent, a greedy agent, and human players. Both the DRL agent and the greedy approach performed well, suggesting a greedy approach can be appropriate for computationally tractable system configurations and a DRL agent is a viable path forward for systems of increased complexity. This work paves the way to create multi-player distribution system control games which could be designed to defend the power grid under a sophisticated cyber-attack.

More Details
7 Results
7 Results