Publications

13 Results
Skip to search filters

Bioinspired synthesis of thermally stable and mechanically strong nanocomposite coatings

MRS Advances

Xu, Guangping X.; Fan, Hongyou F.; McCoy, C.A.; Mills, Melissa M.; Schwarz, Jens S.

Abstract: An innovative biomimetic method has been developed to synthesize layered nanocomposite coatings using silica and sugar-derived carbon to mimic the formation of a natural seashell structure. The layered nanocomposites are fabricated through alternate coatings of condensed silica and sugar. Sugar-derived carbon is a cost-effective material as well as environmentally friendly. Pyrolysis of sugar will form polycyclic aromatic carbon sheets, i.e., carbon black. The resulting final nanocomposite coatings can survive temperatures of more than 1150 °C and potentially up to 1650 °C. These coatings have strong mechanical properties, with hardness of more than 11 GPa and elastic modulus of 120 GPa, which are 80% greater than those of pure silica. The layered coatings have many applications, such as shielding in the form of mechanical barriers, body armor, and space debris shields. Graphical abstract: [Figure not available: see fulltext.]

More Details

Molecular Dynamics Simulation and Cryo-Electron Microscopy Investigation of AOT Surfactant Structure at the Hydrated Mica Surface

Minerals

Long, Daniel M.; Greathouse, Jeffery A.; Xu, Guangping X.; Jungjohann, Katherine L.

Structural properties of the anionic surfactant dioctyl sodium sulfosuccinate (AOT or Aerosol-OT) adsorbed on the mica surface were investigated by molecular dynamics simulation, including the effect of surface loading in the presence of monovalent and divalent cations. The simulations confirmed recent neutron reflectivity experiments that revealed the binding of anionic surfactant to the negatively charged surface via adsorbed cations. At low loading, cylindrical micelles formed on the surface, with sulfate head groups bound to the surface by water molecules or adsorbed cations. Cation bridging was observed in the presence of weakly hydrating monovalent cations, while sulfate groups interacted with strongly hydrating divalent cations through water bridges. The adsorbed micelle structure was confirmed experimentally with cryogenic electronic microscopy, which revealed micelles approximately 2 nm in diameter at the basal surface. At higher AOT loading, the simulations reveal adsorbed bilayers with similar surface binding mechanisms. Adsorbed micelles were slightly thicker (2.2–3.0 nm) than the corresponding bilayers (2.0–2.4 nm). Upon heating the low loading systems from 300 K to 350 K, the adsorbed micelles transformed to a more planar configuration resembling bilayers. The driving force for this transition is an increase in the number of sulfate head groups interacting directly with adsorbed cations.

More Details

Effects of natural zeolites on field-scale geologic noble gas transport

Journal of Environmental Radioactivity

Feldman, Joshua D.; Paul, Matthew J.; Xu, Guangping X.; Rademacher, David R.; Wilson, Jennifer E.; Nenoff, T.M.

Improving predictive models for noble gas transport through natural materials at the field-scale is an essential component of improving US nuclear monitoring capabilities. Several field-scale experiments with a gas transport component have been conducted at the Nevada National Security Site (Non-Proliferation Experiment, Underground Nuclear Explosion Signatures Experiment). However, the models associated with these experiments have not treated zeolite minerals as gas adsorbing phases. This is significant as zeolites are a common alteration mineral with a high abundance at these field sites and are shown here to significantly fractionate noble gases during field-scale transport. This fractionation and associated retardation can complicate gas transport predictions by reducing the signal-to-noise ratio to the detector (e.g. mass spectrometers or radiation detectors) enough to mask the signal or make the data difficult to interpret. Omitting adsorption-related retardation data of noble gases in predictive gas transport models therefore results in systematic errors in model predictions where zeolites are present.Herein is presented noble gas adsorption data collected on zeolitized and non-zeolitized tuff. Experimental results were obtained using a unique piezometric adsorption system designed and built for this study. Data collected were then related to pure-phase mineral analyses conducted on clinoptilolite, mordenite, and quartz. These results quantify the adsorption capacity of materials present in field-scale systems, enabling the modeling of low-permeability rocks as significant sorption reservoirs vital to bulk transport predictions.

More Details
13 Results
13 Results