Time-variable moment tensor inversion of seismic and seismoacoustic data at the Source Physics Experiment Phase II: Dry Alluvium Geology
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Bulletin of the Seismological Society of America
The Rock Valley fault zone (RVFZ), an intraplate strike-slip fault zone in the southern Nevada National Security Site (NNSS), hosted a series of very shallow (<3 km) earthquakes in 1993. The RVFZ may also have hydrological significance within the NNSS, potentially playing a role in regional groundwater flow, but there is a lack of local hydrological data. In the Spring of 2021, we collected active-source accelerated weight drop seismic data over part of the RVFZ to better characterize the shallow subsurface. We manually picked ∼17,000 P-wave travel times and over 14,000 S-wave travel times, which were inverted for P-wave velocity (VP), S-wave velocity (VS), and VP = VS ratio in a 3D joint tomographic inversion scheme. Seismic velocities are imaged as deep as ∼700 m in areas and generally align with geologic and structural expectations. VP and VS are relatively reduced near mapped and inferred faults, with the most prominent lower VP and VS zone around the densest collection of faults. We image VP = VS ratios ranging from ∼1.5 to ∼2.4, the extremes of which occur at a depth of ∼100 m and are juxtaposed across a fault. One possible interpretation of the imaged seismic velocities is enhanced fault damage near the densest collection of faults with relatively higher porosity and/or crack density at ∼100 m depth, with patches of semiperched groundwater present in the sedimentary rock in higher VP = VS areas and drier rock in lower VP = VS areas. A relatively higher VP = VS area beneath the densest faults persists at depth, which suggests percolation of groundwater via the fault damage zone to the regionally connected lower carbonate aquifer. Potentially, the presence and movement of groundwater may have played a role in the 1993 earthquake aftershocks.
Seismic Record
Accurate event locations are important for many endeavors in seismology, and understanding the factors that contribute to uncertainties in those locations is complex. In this article, we present a case study that takes an in-depth look at the accuracy and precision possible for locating nine shallow earthquakes in the Rock Valley fault zone in southern Nevada. These events are targeted by the Rock Valley Direct Comparison phase of the Source Physics Experiment, as candidates for the colocation of a chemical explosion with an earthquake hypocenter to directly compare earthquake and explosion sources. For this comparison, it is necessary to determine earthquake hypocenters as accurately as possible so that different source types have nearly identical locations. Our investigations include uncertainty analysis from different sets of phase arrivals, stations, velocity models, and location algorithms. For a common set of phase arrivals and stations, we find that epicentral locations from different combinations of velocity models and algorithms are within 600 m of one another in most cases. Event depths exhibit greater uncertainties, but focusing on the S-P times at the nearest station allows for estimates within approximately 500 m.
In this report, we document the process related to developing a regional geologic model of a 605 x 1334 km area centered around Utah and encompassing surrounding states. This model is developed to test the effect that composition of a model has on the generation of synthetic data with the intent of using this information to improve upon full waveform moment tensor inversions. We compare observed data from three seismic events and five stations to the synthetic data generated by a preliminary model derived from a geologic framework model (GFM) developed by the USGS. The synthetic data and observed data comparisons indicate that our preliminary model performs well at smaller offset distances in the northern and central sections of the model. However, the southern stations consistently display synthetic data P- and S-wave arrival times that do not match the observed data arrival times, indicating that the velocity structure of the southern part of the model especially is inaccurate.
In this brief report we document algorithmic choices and updates to our code related to the earthquake relocation portion of our tomographic imaging algorithm. We show results of these improvements by relocating over 40,000 events located within 20-30 km of the Rock Valley Direct Comparison (RV/DC) site using both absolute and differential arrival times within the context of two different 3-D Earth models. Accurate hypocentral locations and Earth models are important to the ultimate goals of the RV/DC program, which will co-locate a chemical explosion with a shallow earthquake within Rock Valley, southern Nevada, to investigate differences between the source types and improve our analysis algorithms for both types (Snelson et al., 2022). Our improvements to our relocation algorithms comprise just one step toward achieving these goals
Abstract not provided.
Work accomplished: Collected and compared historic data for the 1993 Rock Valley earthquake sequence; Compared preliminary and prior location work from different location algorithms, phase pick sets, station constellations, and velocity models; Selected a common set of stations that could be used across all location methods for consistency; Reviewed 8 different sets of phase picks and converged on a single, reviewed set of picks for all common stations; Evaluated four pre-existing regional velocity models and incorporated new and preliminary results for five new velocity models that provide information on the very shallow (< 2km) structure near station RTPP; Compared location results from different methods while using the common sets of picks, stations, and velocity models
The Source Physics Experiments (SPE) were designed to improve our physics-based understanding of explosion sources for the purposes of nuclear test monitoring. Phase I consisted of 6 chemical explosions in the Climax Stock Granite of the Nevada National Security Site (NNSS), while Phase II consisted of 4 explosions in a contrasting dry alluvium geology (DAG) in Yucca Flat, providing essential data in various media and emplacement conditions to further modeling efforts. For Phase III, the Rock Valley Direct Comparison (RVDC) seeks to directly compare earthquake and explosion source types. An unusually shallow series of events in 1993 along the Rock Valley Fault Zone in the southeastern portion of the NNSS has been targeted for this direct comparison. Depth ranges for the events, previously estimated to be less than 3 km, is achievable by modern drilling techniques and accessibility to the epicentral locations would require minimal improvements to the infrastructure. The events providing this unique opportunity for direct comparison are the focus of this report.
Renewable Energy
Marine hydrokinetic devices, such as wave energy converters (WECs), can unlock untapped energy from the ocean's currents and waves. Acoustic impact assessments are required to ensure that the noise these devices generate will not negatively impact marine life, and accurate modeling of noise provides an a priori means to viably perform this assessment. We present a case study of the PacWave South site, a WEC testing site off the coast of Newport, Oregon, demonstrating the use of ParAcousti, an open-source hydroacoustic propagator tool, to model noise from an array of 28 WECs in a 3-dimensional (3-D) realistic marine environment. Sound pressure levels are computed from the modeled 3-D grid of pressure over time, which we use to predict marine mammal acoustic impact metrics (AIMs). We combine two AIMs, signal to noise ratio and sensation level, into a new metric, the effective signal level (ESL), which is a function of propagated sound, background noise levels, and hearing thresholds for marine species and is evaluated across 1/3 octave frequency intervals. The ESL model can be used to predict and quantify the potential impact of an anthropogenic signal on the health and behavior of a marine mammal species throughout the 3-D simulation area.
Geophysical Journal International
Characterizing explosion sources and differentiating between earthquake and underground explosions using distributed seismic networks becomes non-trivial when explosions are detonated in cavities or heterogeneous ground material. Moreover, there is little understanding of how changes in subsurface physical properties affect the far-field waveforms we record and use to infer information about the source. Simulations of underground explosions and the resultant ground motions can be a powerful tool to systematically explore how different subsurface properties affect far-field waveform features, but there are added variables that arise from how we choose to model the explosions that can confound interpretation. To assess how both subsurface properties and algorithmic choices affect the seismic wavefield and the estimated source functions, we ran a series of 2-D axisymmetric non-linear numerical explosion experiments and wave propagation simulations that explore a wide array of parameters. We then inverted the synthetic far-field waveform data using a linear inversion scheme to estimate source–time functions (STFs) for each simulation case. We applied principal component analysis (PCA), an unsupervised machine learning method, to both the far-field waveforms and STFs to identify the most important factors that control variance in the waveform data and differences between cases. For the far-field waveforms, the largest variance occurs in the shallower radial receiver channels in the 0–50 Hz frequency band. For the STFs, both peak amplitude and rise times across different frequencies contribute to the variance. We find that the ground equation of state (i.e. lithology and rheology) and the explosion emplacement conditions (i.e. tamped versus cavity) have the greatest effect on the variance of the far-field waveforms and STFs, with the ground yield strength and fracture pressure being secondary factors. Differences in the PCA results between the far-field waveforms and STFs could possibly be due to near-field non-linearities of the source that are not accounted for in the estimation of STFs and could be associated with yield strength, fracture pressure, cavity radius and cavity shape parameters. Other algorithmic parameters are found to be less important and cause less variance in both the far-field waveforms and STFs, meaning algorithmic choices in how we model explosions are less important, which is encouraging for the further use of explosion simulations to study how physical Earth properties affect seismic waveform features and estimated STFs.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Gaining a proper understanding of how Earth structure and other near-source properties affect estimates of explosion yield is important to the nonproliferation mission. The yields of explosion sources are often based on seismic moment or waveform amplitudes. Quantifying how the seismic waveforms or estimates of the source characteristics derived from those waveforms are influenced by natural or man-made structures within the near-source region, where the wavefield behaves nonlinearly, is required to understand the full range of uncertainty in those yield estimates. We simulate tamped chemical explosions using a nonlinear, shock physics code and couple the ground motions beyond the elastic radius to a linear elastic, full waveform seismic simulation algorithm through 3D media. In order to isolate the effects of simple small-scale 3D structures on the seismic wavefield and linear seismic source estimates, we embed spheres and cylinders close to the fully- tamped source location within an otherwise homogenous half-space. The 3 m diameters spheres, given their small size compared to the predominate wavelengths investigated, not surprisingly are virtually invisible with only negligible perturbations to the far-field waveforms and resultant seismic source time functions. Similarly, the 11 m diameter basalt sphere has a larger, but still relatively minor impact on the wavefield. However, the 11 m diameter air-filled sphere has the largest impact on both waveforms and the estimated seismic moment of any of the investigated cases with a reduction of ~25% compared to the tamped moment. This significant reduction is likely due in large part to the cavity collapsing from the shock instead of being solely due to diffraction effects . Although the cylinders have the same diameters as the 3 m spheres, their length of interaction with the wavefield produces noticeable changes to the seismic waveforms and estimated source terms with reductions in the peak seismic moment on the order of 10%. Both the cylinders and 11 m diameter spheres generate strong shear waves that appear to emanate from body force sources.
Abstract not provided.
Abstract not provided.
Abstract not provided.
We used the CTH shock physics code to simulate the explosion of an 18-t chemical explosive at a depth of 250 m. We used the CTH in the two-dimensional axisymmetric (cylindrical) geometry (2DC) and most simulations included fully tamped explosions in wet tuff. Our study focused on parametric studies of three of the traditional strength models available in CTH, namely, geologic-yield, elastic perfectly-plastic von Mises, and Johnson-Cook strength (flow stress) models. We processed CTH results through a code that generates Reduced Displacement Potential (RDP) histories for each simulation. Since RDP is the solution of the linear wave equation in spherical coordinates, it is mainly valid at far-enough distance from the explosion the elastic radius. Among various parameters examined, we found the yield strength to have the greatest effect on the resulting RDP, where the peak RDP reduces almost linearly in log-log space as the yield strength increases. Moreover, an underground chemical explosion results in a cavity whose final diameter is inversely proportional to the material yield strength, i.e., as the material's yield strength increases the resulting final cavity radius decreases. Additionally, we found the choice of explosive material (COMP-C4 versus COMP-B) has minor effects on the peak RDP, where denser COMP-C4 shows higher peak RDP than the less dense COMP-B by a factor of ~1.1. In addition to wet tuff, we studied explosions in dry tuff, salt, and basalt, for a single strength model and yield strength value. We found wet tuff has the highest peak RDP value, followed by dry tuff, salt, and basalt. 2DC simulations of explosions in 11 m radius spherical, hemispherical, and cylindrical cavities showed the RDP signals have much lower magnitude than tamped explosions, where the cavity explosions mimicked nearly decoupled explosions.
Abstract not provided.
Rock Valley, in the southern end of the Nevada National Security Site, hosts a fault system that was responsible for a shallow (< 3 km below surface ) magnitude 3.7 earthquake in May 1993. In order to better understand this system, seismic properties of the shallow subsurface need to be better constrained. In April and May of 2021, accelerated weight drop (AWD) active-source seismic data were recorded in order to measure P- and S-wave travel-times for the area. This report describes the processing and phase picking of the recorded seismic waveforms. In total, we picked 7,982 P-wave arrivals at offsets up to ~2500 m, and 4,369 S-wave arrivals at offsets up to ~2200 m. These travel-time picks can be inverted for shallow P-wave and S-wave velocity structure in future studies.