Publications

Results 1–25 of 31

Search results

Jump to search filters

The AtmoSOFAR Channel: First Direct Observations of an Elevated Acoustic Duct

Earth and Space Science

Albert, Sarah A.; Bowman, Daniel B.; Silber, Elizabeth A.; Dannemann Dugick, Fransiska K.

The Sound Fixing and Ranging (SOFAR) channel in the ocean allows for low frequency sound to travel thousands of kilometers, making it particularly useful for detecting underwater nuclear explosions. Suggestions that an elevated SOFAR-like channel should exist in the stratosphere date back over half a century and imply that sources within this region can be reliably sensed at vast distances. However, this theory has not been supported with evidence of direct observations from sound within this channel. Here we show that an infrasound sensor on a solar hot air balloon recorded the first infrasound detection of a ground truth airborne source while within this acoustic channel, which we refer to as the AtmoSOFAR channel. Our results support the existence of the AtmoSOFAR channel, demonstrate that acoustic signals can be recorded within it, and provide insight into the characteristics of recorded signals. Results also show a lack of detections on ground-based stations, highlighting the advantages of using balloon-borne infrasound sensors to detect impulsive sources at altitude.

More Details

A New Decade in Seismoacoustics (2010–2022)

Bulletin of the Seismological Society of America

Dannemann Dugick, Fransiska K.; Koch, Clinton K.; Berg, Elizabeth M.; Albert, Sarah A.; Arrowsmith, Stephen

Several sources of interest often generate both low-frequency acoustic and seismic signals due to energy propagation through the atmosphere and the solid Earth. Seismic and acoustic observations are associated with a wide range of sources, including earthquakes, volcanoes, bolides, chemical and nuclear explosions, ocean noise, and others. The fusion of seismic and acoustic observations contributes to a better understanding of the source, both in terms of constraining source location and physics, as well as the seismic to acoustic coupling of energy. In this review, we summarize progress in seismoacoustic data processing, including recent developments in open-source data availability, low-cost seismic and acoustic sensors, and large-scale deployments of collocated sensors from 2010 to 2022. Similarly, we outline the recent advancements in modeling efforts for both source characteristics and propagation dynamics. Finally, we highlight the advantages of fusing multiphenomenological signals, focusing on current and future techniques to improve source detection, localization, and characterization efforts. This review aims to serve as a reference for seismologists, acousticians, and others within the growing field of seismoacoustics and multiphenomenology research.

More Details

Seismoacoustic Signatures Observed During a Long-Term Deployment of Infrasound Sensors at the Nevada National Security Site

Bulletin of the Seismological Society of America

Wilson, Trevor C.; Bowman, Daniel B.; Elbing, Brian R.; Petrin, Christopher E.; Dannemann Dugick, Fransiska K.

Earthquakes have repeatedly been shown to produce inaudible acoustic signals (< 20 Hz), otherwise known as infrasound. These signals can propagate hundreds to thousands of kilometers and still be detected by ground-based infrasound arrays depending on the source strength, distance between source and receiver, and atmospheric conditions. Another type of signal arrival at infrasound arrays is the seismic induced motion of the sensor itself, or ground-motion-induced sensor noise. Measured acoustic and seismic waves produced by earthquakes can provide insight into properties of the earthquake such as magnitude, depth, and focal mechanism, as well as information about the local lithology and atmospheric conditions. Large earthquakes that produce strong acoustic signals detected at distances greater than 100 km are the most commonly studied; however, more recent studies have found that smaller magnitude earthquakes (Mw < 2:0) can be detected at short ranges. In that vein, this study will investigate the ability for a long-term deployment of infrasound sensors (deployed as part of the Source Physics Experiments [SPE] from 2014 to 2020) to detect both seismic and infrasonic signals from earthquakes at local ranges (< 50 km). Methods used include a combination of spectral analysis and automated array processing, supported by U.S. Geological Survey earthquake bulletins. This investigation revealed no clear acoustic detections for short range earthquakes. However, secondary infrasound from an Mw 7.1 earthquake over 200 km away was detected. Important insights were also made regarding the performance of the SPE networks including detections of other acoustic sources such as bolides and rocket launches. Finally, evaluation of the infrasound arrays is performed to provide insight into optimal deployments for targeting earthquake infrasound.

More Details

Introduction to the Special Section on Seismoacoustics and Seismoacoustic Data Fusion

Bulletin of the Seismological Society of America

Dannemann Dugick, Fransiska K.; Bishop, Jordan W.; Martire, Leo; Iezzi, Alexandra M.; Assink, Jelle D.; Brissaud, Quentin; Arrowsmith, Stephen

This special section of the Bulletin of the Seismological Society of America provides a broad overview on recent advances to the understanding of the seismoacoustic wavefield through 19 articles. Leveraging multiphenomenology datasets is instrumental for the continued success of future planetary missions, nuclear test ban treaty verification, and natural hazard monitoring. Progress in our theoretical understanding of mechanical coupling, advancements in coupled-media wave modeling, and developments of efficient multitechnology inversion procedures are key to fully exploiting geophysical datasets on Earth and beyond. We begin by highlighting papers describing experimental setups and instrumentation, followed by characterization of natural and anthropogenic sources of interest, and ending in new open-access datasets. Finally, we conclude with an overview of challenges that remain as well as some potential directions for future investigation within the growing multidisciplinary field of seismoacoustics.

More Details

The Strange Case of Ground-Coupled Airwaves on Seismoacoustic Stations at Local to Near-Regional Scales

Berg, Elizabeth M.; Dannemann Dugick, Fransiska K.; Albert, Sarah A.; Koch, Clinton K.

Here we investigate the application of ground-coupled airwaves observed by seismoacoustic stations at local to near-regional scales to detect signals of interest and determine back-azimuth information. Ground-coupled airwaves are created from incident pressure waves traveling through the atmosphere that couple to the earth and transmit as a seismic wave with retrograde elliptical motion. Previous studies at sub-local scales (<10 km from a source of interest) found the back-azimuth to the source could be accurately determined from seismoacoustic signals recorded by acoustic and 3-component seismic sensors spatially separated on the order of 10 to 150 m. The potential back-azimuth directions are estimated from the coherent signals between the acoustic and vertical seismic data, via a propagation-induced phase shift of the seismoacoustic signal. A unique solution is then informed by the particle motion of the 3-component seismic station, which was previously found to be less accurate than the seismoacoustic-sensor method. We investigate the applicability of this technique to greater source-receiver distances, from 50-100 km and up to 400 km, which contains pressure waves with tropospheric and stratospheric ray paths, respectively. Specifically, we analyze seismoacoustic sources with ground truth from rocket motor fuel elimination events at the Utah Test and Training Range (UTTR) as well as a 2020 rocket launch in Southern California. From these sources we observe evidence that while coherent signals can be seen from both sources on multiple seismoacoustic station pairs, the determined ground-coupled airwave back-azimuths are more complicated than results at more local scales. Our findings suggest more complex factors including incidence angle, coupling location, subsurface material, and atmospheric propagation effects need to be fully investigated before the ground-coupled airwave back-azimuth determination method can be applied or assessed at these further distances.

More Details

Modeling Urban Acoustic Noise in the Las Vegas, NV Region

Wynn, Nora C.; Dannemann Dugick, Fransiska K.

Ambient infrasound noise in quiet, rural environments has been extensively studied and well-characterized through noise models for several decades. More recently, creating noise models for high-noise rural environments has also become an area of active research. However, far less work has been done to create generalized low-frequency noise models for urban areas. The high ambient noise levels expected in cities and other highly populated areas means that these environments are regarded as poor locations for acoustic sensors, and historically, sensor deployment in urban areas were avoided for this reason. However, there are several advantages to placing sensors in urban environments, including convenience of deployment and maintenance, and increasingly, necessity, as more previously rural areas become populated. This study seeks to characterize trends in low-frequency urban noise by creating a background noise model for Las Vegas, NV, using the Las Vegas Infrasound Array (LVIA): a network of eleven infrasound sensors deployed throughout the city. Data included in this study spans from 2019 to 2021 and provides a largely uninterrupted record of noise levels in the city from 0.1–500 Hz, with only minor discontinuities on individual stations. We organize raw data from the LVIA sensors into hourly power spectral density (PSD) averages for each station and select from these PSDs to create frequency distributions for time periods of interest . These frequency distributions are converted into probability density functions (PDFs), which are then used to evaluate variations in frequency and amplitude over daily to seasonal timescale s. In addition to PDFs, the median, 5th percentile, and 95th percentile amplitude values are calculated across the entire frequency range. This methodology follows a well-established process for noise model creation.

More Details

Evaluating the location capabilities of a regional infrasonic network in Utah, US, using both ray tracing-derived and empirical-derived celerity-range and backazimuth models

Geophysical Journal International

Dannemann Dugick, Fransiska K.; Blom, Philip S.; Stump, Brian W.; Hayward, Chris T.; Arrowsmith, Stephen J.; Carmichael, Joshua C.; Marcillo, Omar E.

More realistic models for infrasound signal propagation across a region can be used to improve the precision and accuracy of spatial and temporal source localization estimates. Here, motivated by incomplete infrasound event bulletins in the Western US, the location capabilities of a regional infrasonic network of stations located between 84–458 km from the Utah Test and Training Range, Utah, USA, is assessed using a series of near-surface explosive events with complementary ground truth (GT) information. Signal arrival times and backazimuth estimates are determined with an automatic F-statistic based signal detector and manually refined by an analyst. This study represents the first application of three distinct celerity-range and backazimuth models to an extensive suite of realistic signal detections for event location purposes. A singular celerity and backazimuth deviation model was previously constructed using ray tracing analysis based on an extensive archive of historical atmospheric specifications and is applied within this study to test location capabilities. Similarly, a set of multivariate, season and location specific models for celerity and backazimuth are compared to an empirical model that depends on the observations across the infrasound network and the GT events, which accounts for atmospheric propagation variations from source to receiver. Discrepancies between observed and predicted signal celerities result in locations with poor accuracy. Application of the empirical model improves both spatial localization precision and accuracy; all but one location estimates retain the true GT location within the 90 per cent confidence bounds. Average mislocation of the events is 15.49 km and average 90 per cent error ellipse areas are 4141 km2. The empirical model additionally reduces origin time residuals; origin time residuals from the other location models are in excess of 160 s while residuals produced with the empirical model are within 30 s of the true origin time. Finally, we demonstrate that event location accuracy is driven by a combination of signal propagation model and the azimuthal gap of detecting stations. A direct relationship between mislocation, error ellipse area and increased station azimuthal gaps indicate that for sparse networks, detection backazimuths may drive location biases over traveltime estimates.

More Details

Data Report: TurboWave I and II Data Release

Dannemann Dugick, Fransiska K.; Bowman, Daniel B.

The TurboWave I and II infrasound campaigns were conducted to examine short term variability in acoustic propagation at local and regional distances. The tests were conducted in nearly co-located regions at the Energetic Materials Research and Testing Center in Socorro, NM between 2019 and 2020 and recorded across a variety of acoustic microbarometer sensors. This report details the waveform data recorded from the experiment and coincides with data archival at the Incorporated Research Institutions for Seismology. The report includes a description of the experiment along with the types of data and instruments. The data release includes raw waveform data as well as metadata information.

More Details

Utilizing the Dynamic Networks Data Processing and Analysis Experiment (DNE18) to Establish Methodologies for the Comparison of Automatic Infrasonic Signal Detectors

Dannemann Dugick, Fransiska K.; Albert, Sarah A.; Arrowsmith, Stephen J.; Averbuch, Gil

The Dynamic Networks Experiment 2018 (DNE18) was a collaborative effort between Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), Lawrence Livermore National Laboratory (LLNL) and Pacific Northwest National Laboratory (PNNL) designed to evaluate methodologies for multi-modal data ingestion and processing. One component of this virtual experiment was a quantitative assessment of current capabilities for infrasound data processing, beginning with the establishment of a baseline for infrasound signal detection. To produce such baselines, SNL and LANL exploited a common dataset of infrasound data recorded across a regional network in Utah from December 2010 through February 2011. We utilize two automated signal detectors, the Adaptive F-Detector (AFD) and the Multivariate Adaptive Learning Detector (MALD) to produce automated signal detection catalogs and an analyst-produced catalog. Comparisons indicate that automatic detectors may be able to identify small amplitude, low SNR events that cannot be identified by analyst review. We document detector performance in terms of precision and recall, demonstrating that the AFD is more precise, but the MALD has higher recall. We use a synthetic dataset of signals embedded in pink noise in order to highlight shortcomings in assessing detection algorithms for low signal to noise ratio signals which are commonly of interest to the nuclear monitoring community. For comparisons utilizing the synthetic dataset, the AFD has higher recall while precision is equal for both detectors. These results indicate that both detectors perform well across a variety of background noise environments; however, both detectors fail to identify repetitive, short duration signals arriving from similar backazimuths. These failures represent specific scenarios that could be targeted for further detector development.

More Details
Results 1–25 of 31
Results 1–25 of 31