Improved neural operators for fast and accurate pressure and saturation prediction at the IBDP site
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Seismological Research Letters
Induced seismicity is an inherent risk associated with geologic carbon storage (GCS) in deep rock formations that could contain undetected faults prone to failure. Modeling-based risk assessment has been implemented to quantify the potential of injection-induced seismicity, but typically simplified multiscale geologic features or neglected multiphysics coupled mechanisms because of the uncertainty in field data and computational cost of field-scale simulations, which may limit the reliable prediction of seismic hazard caused by industrial-scale CO2 storage. The degree of lateral continuity of the stratigraphic interbedding below the reservoir and depth-dependent fault permeability can enhance or inhibit pore-pressure diffusion and corresponding poroelastic stressing along a basement fault. This study presents a rigorous modeling scheme with optimal geological and operational parameters needed to be considered in seismic monitoring and mitigation strategies for safe GCS.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Polymers
Polymer concrete (PC) has been used to replace cement concrete when harsh service conditions exist. Polymers have a high carbon footprint when considering their life cycle analysis, and with increased climate change concerns and the need to reduce greenhouse gas emission, bio-based polymers could be used as a sustainable alternative binder to produce PC. This paper examines the development and characterization of a novel bio-polymer concrete (BPC) using bio-based polyurethane used as the binder in lieu of cement, modified with benzoic acid and carboxyl-functionalized multi-walled carbon nanotubes (MWCNTs). The mechanical performance, durability, microstructure, and chemical properties of BPC are investigated. Moreover, the effect of the addition of benzoic acid and MWCNTs on the properties of BPC is studied. The new BPC shows relatively low density, appreciable compressive strength between 20–30 MPa, good tensile strength of 4 MPa, and excellent durability resistance against aggressive environments. The new BPC has a low carbon footprint, 50% lower than ordinary Portland cement concrete, and can provide a sustainable concrete alternative in infrastructural applications.
IEEE Access
This study presents a method for constructing machine learning-based reduced order models (ROMs) that accurately simulate nonlinear contact problems while quantifying epistemic uncertainty. These purely non-intrusive ROMs significantly lower computational costs compared to traditional full order models (FOMs). The technique utilizes adversarial training combined with an ensemble of Barlow twins reduced order models (BT-ROMs) to maximize the information content of the nonlinear reduced manifolds. These lower-dimensional manifolds are equipped with Gaussian error estimates, allowing for quantifying epistemic uncertainty in the ROM predictions. The effectiveness of these ROMs, referred to as UQ-BT-ROMs, is demonstrated in the context of contact between a rigid indenter and a hyperelastic substrate under finite deformations. The ensemble of BT-ROMs improves accuracy and computational efficiency compared to existing alternatives. The relative error between the UQ-BT-ROM and FOM solutions ranges from approximately 3% to 8% across all benchmarks. Remarkably, this high level of accuracy is achieved at a significantly reduced computational cost compared to FOMs. For instance, the online phase of the UQ-BT-ROM takes only 0.001 seconds, while a single FOM evaluation requires 63 seconds. Furthermore, the error estimate produced by the UQ-BT-ROMs reasonably captures the errors in the ROMs, with increasing accuracy as training data increases. The ensemble approach improves accuracy and computational efficiency compared to existing alternatives. The UQ-BT-ROMs provide a cost-effective solution with significantly reduced computational times while maintaining a high level of accuracy.
57th US Rock Mechanics/Geomechanics Symposium
Characterization of geologic heterogeneity at an enhanced geothermal system (EGS) is crucial for cost-effective stimulation planning and reliable heat production. With recent advances in computational power and sensor technology, large-scale fine-resolution simulations of coupled thermal-hydraulic-mechanical (THM) processes have been available. However, traditional large-scale inversion approaches have limited utility for sites with complex subsurface structures unless one can afford high, often computationally prohibitive, computations. Key computational burdens are predominantly associated with a number of large-scale coupled numerical simulations and large dense matrix multiplications derived from fine discretization of the field site domain and a large number of THM and chemical (THMC) measurements. In this work, we present deep-generative model-based Bayesian inversion methods for the computationally efficient and accurate characterization of EGS sites. Deep generative models are used to learn the approximate subsurface property (e.g., permeability, thermal conductivity, and elastic rock properties) distribution from multipoint geostatistics-derived training images or discrete fracture network models as a prior and accelerated stochastic inversion is performed on the low-dimensional latent space in a Bayesian framework. Numerical examples with synthetic permeability fields with fracture inclusions with THM data sets based on Utah FORGE geothermal site will be presented to test the accuracy, speed, and uncertainty quantification capability of our proposed joint data inversion method.
Abstract not provided.
Scientific Reports
Migration of seismic events to deeper depths along basement faults over time has been observed in the wastewater injection sites, which can be correlated spatially and temporally to the propagation or retardation of pressure fronts and corresponding poroelastic response to given operation history. The seismicity rate model has been suggested as a physical indicator for the potential of earthquake nucleation along faults by quantifying poroelastic response to multiple well operations. Our field-scale model indicates that migrating patterns of 2015–2018 seismicity observed near Venus, TX are likely attributed to spatio-temporal evolution of Coulomb stressing rate constrained by the fault permeability. Even after reducing injection volumes since 2015, pore pressure continues to diffuse and steady transfer of elastic energy to the deep fault zone increases stressing rate consistently that can induce more frequent earthquakes at large distance scales. Sensitivity tests with variation in fault permeability show that (1) slow diffusion along a low-permeability fault limits earthquake nucleation near the injection interval or (2) rapid relaxation of pressure buildup within a high-permeability fault, caused by reducing injection volumes, may mitigate the seismic potential promptly.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.