Publications

Results 1–25 of 256
Skip to search filters

Designing Resilient Communities: Hardware demonstration of resilience nodes concept

Reno, Matthew J.; Ropp, Michael E.; Tamrakar, Ujjwol; Darbali-Zamora, Rachid; Broderick, Robert J.

As part of the project ? Designing Resilient Communities (DRC) : A Consequence - Based Approach for Grid Investment , ? funded by the United States (US) Department of Energy?s (DOE) Grid Modernization Laboratory Consortium (GMLC), Sandia National Labora tories (Sandia) is partnering with a variety of government , industry, and university participants to develop and test a framework for community resilience planning focused on modernization of the electric grid. This report provides a summary of the section of the project focused on h ardware demonstration of ?resilience nodes? concept . Acknowledgements ? SAG members ? P roject partners ? Project team/management ? P roject sponsors ? O ther stakeholders

More Details

Solar PV Inverter Reactive Power Disaggregation and Control Setting Estimation

IEEE Transactions on Power Systems

Talkington, Samuel; Grijalva, Santiago; Reno, Matthew J.; Azzolini, Joseph A.

The wide variety of inverter control settings for solar photovoltaics (PV) causes the accurate knowledge of these settings to be difficult to obtain in practice. This paper addresses the problem of determining inverter reactive power control settings from net load advanced metering infrastructure (AMI) data. The estimation is first cast as fitting parameterized control curves. We argue for an intuitive and practical approach to preprocess the AMI data, which exposes the setting to be extracted. We then develop a more general approach with a data-driven reactive power disaggregation algorithm, reframing the problem as a maximum likelihood estimation for the native load reactive power. These methods form the first approach for reconstructing reactive power control settings of solar PV inverters from net load data. The constrained curve fitting algorithm is tested on 701 loads with behind-the-meter (BTM) PV systems with identical control settings. The settings are accurately reconstructed with mean absolute percentage errors between 0.425% and 2.870%. The disaggregation-based approach is then tested on 451 loads with variable BTM PV control settings. Different configurations of this algorithm reconstruct the PV inverter reactive power timeseries with root mean squared errors between 0.173 and 0.198 kVAR.

More Details

IMoFi (Intelligent Model Fidelity): Physics-Based Data-Driven Grid Modeling to Accelerate Accurate PV Integration Updated Accomplishments

Reno, Matthew J.; Blakely, Logan; Trevizan, Rodrigo D.; Pena, Bethany D.; Lave, Matthew S.; Azzolini, Joseph A.; Yusuf, Jubair Y.; Jones, Christian B.; Furlani Bastos, Alvaro F.; Chalamala, Rohit C.; Korkali, Mert K.; Sun, Chih-Che S.; Donadee, Jonathan D.; Stewart, Emma M.; Donde, Vaibhav D.; Peppanen, Jouni P.; Hernandez, Miguel H.; Deboever, Jeremiah D.; Rocha, Celso R.; Rylander, Matthew R.; Siratarnsophon, Piyapath S.; Grijalva, Santiago G.; Talkington, Samuel T.; Mason, Karl M.; Vejdan, Sadegh V.; Khan, Ahmad U.; Mbeleg, Jordan S.; Ashok, Kavya A.; Divan, Deepak D.; Li, Feng L.; Therrien, Francis T.; Jacques, Patrick J.; Rao, Vittal R.; Francis, Cody F.; Zaragoza, Nicholas Z.; Nordy, David N.; Glass, Jim G.; Holman, Derek H.; Mannon, Tim M.; Pinney, David P.

This report summarizes the work performed under a project funded by U.S. DOE Solar Energy Technologies Office (SETO), including some updates from the previous report SAND2022-0215, to use grid edge measurements to calibrate distribution system models for improved planning and grid integration of solar PV. Several physics-based data-driven algorithms are developed to identify inaccuracies in models and to bring increased visibility into distribution system planning. This includes phase identification, secondary system topology and parameter estimation, meter-to-transformer pairing, medium-voltage reconfiguration detection, determination of regulator and capacitor settings, PV system detection, PV parameter and setting estimation, PV dynamic models, and improved load modeling. Each of the algorithms is tested using simulation data and demonstrated on real feeders with our utility partners. The final algorithms demonstrate the potential for future planning and operations of the electric power grid to be more automated and data-driven, with more granularity, higher accuracy, and more comprehensive visibility into the system.

More Details

Signal-Based Fast Tripping Protection Schemes for Electric Power Distribution System Resilience

Reno, Matthew J.; Jimenez Aparicio, Miguel J.; Wilches-Bernal, Felipe W.; Hernandez Alvidrez, Javier H.; Montoya, Armando Y.; Barba, Pedro; Flicker, Jack D.; Dow, Andrew R.; Bidram, Ali B.; Paruthiyil, Sajay P.; Montoya, Rudy A.; Poudel, Binod P.; Reimer, Benjamin R.; Lavrova, Olga L.; Biswal, Milan B.; Miyagishima, Frank M.; Carr, Christopher L.; Pati, Shubhasmita P.; Ranade, Satish J.; Grijalva, Santiago G.; Paul, Shuva P.

This report is a summary of a 3-year LDRD project that developed novel methods to detect faults in the electric power grid dramatically faster than today’s protection systems. Accurately detecting and quickly removing electrical faults is imperative for power system resilience and national security to minimize impacts to defense critical infrastructure. The new protection schemes will improve grid stability during disturbances and allow additional integration of renewable energy technologies with low inertia and low fault currents. Signal-based fast tripping schemes were developed that use the physics of the grid and do not rely on communication to reduce cyber risks for safely removing faults.

More Details

2022 Peer Review Project Summary: Advanced Protection for Microgrids and DER in Secondary Networks and Meshed Distribution Systems

Reno, Matthew J.; Ropp, Michael E.

Although there are increasing numbers of distributed energy resources (DERs) and microgrids being deployed, current IEEE and utility standards generally strictly limit their interconnection inside secondary networks. Secondary networks are low-voltage meshed (non-radial) distribution systems that create redundancy in the path from the main grid source to each load. This redundancy provides a high level of immunity to disruptions in the distribution system, and thus extremely high reliability of electric power service. There are two main types of secondary networks, called grid and spot secondary networks, both of which are used worldwide. In the future, primary networks in distribution systems that might include looped or meshed distribution systems at the primary-voltage (mediumvoltage) level may also become common as a means for improving distribution reliability and resilience. The objective of this multiyear project is to increase the adoption of microgrids in secondary networks and meshed distribution systems by developing novel protection schemes that allow for safe reliable operation of DERs in secondary networks. We will address these challenges by working with the appropriate stakeholders of secondary network operators, protection vendors, and standards committee. The outcomes of this project include: a) development and/or demonstration of candidate methods for enabling protection of secondary networks containing high levels of DER; b) development of modeling and testing tools for protection systems designed for use with secondary networks including DERs; and c) development of new industrial partnerships to facilitate widespread results dissemination and eventual commercialization of results as appropriate.

More Details

Analysis of Conservation Voltage Reduction under Inverter-Based VAR-Support [Slides]

Azzolini, Joseph A.; Reno, Matthew J.

Conservation voltage reduction (CVR) is a common technique used by utilities to strategically reduce demand during peak periods. As penetration levels of distributed generation (DG) continue to rise and advanced inverter capabilities become more common, it is unclear how the effectiveness of CVR will be impacted and how CVR interacts with advanced inverter functions. In this work, we investigated the mutual impacts of CVR and DG from photovoltaic (PV) systems (with and without autonomous Volt-VAR enabled). The analysis was conducted on an actual utility dataset, including a feeder model, measurement data from smart meters and intelligent reclosers, and metadata for more than 30 CVR events triggered by the utility over the year. The installed capacity of the modeled PV systems represented 66% of peak load, but reached instantaneous penetrations reached up to 2.5x the load consumption over the year. While the objectives of CVR and autonomous Volt-VAR are opposed to one another, this study found that their interactions were mostly inconsequential since the CVR events occurred when total PV output was low.

More Details

Evaluation of Adaptive Volt-VAR to Mitigate PV Impacts [Slides]

Azzolini, Joseph A.; Reno, Matthew J.

Distributed generation (DG) sources like photovoltaic (PV) systems with advanced inverters are able to perform grid-support functions, like autonomous Volt-VAR that attempts to mitigate voltage issues by injecting or consuming reactive power. However, the Volt-VAR function operates with VAR priority, meaning real power may be curtailed to provide additional reactive power support. Since some locations on the grid may be more prone to higher voltages than others, PV systems installed at those locations may be forced to curtail more power, adversely impacting the value of that PV system. Adaptive Volt-VAR (AVV) could be implemented as an alternative, whereby the Volt-VAR reference voltage changes over time, but this functionality has not been well-explored in the literature. In this work, the potential benefits and grid impacts of AVV were investigated using yearlong quasi-static time-series (QSTS) simulations. After testing a variety of allowable AVV settings, we found that even with aggressive settings AVV resulted in <0.01% real power curtailment and significantly reduced the reactive power support required from the PV inverter compared to conventional Volt-VAR but did not provide much mitigation for extreme voltage conditions. The reactive power support provided by AVV was injected to oppose large deviations in voltage (in either direction), indicating that it could be useful for other applications like reducing voltage flicker or minimizing interactions with other voltage regulating devices.

More Details

Analysis of Reactive Power Load Modeling Techniques for PV Impact Studies [Slides]

Azzolini, Joseph A.; Reno, Matthew J.

The increasing availability of advanced metering infrastructure (AMI) data has led to significant improvements in load modeling accuracy. However, since many AMI devices were installed to facilitate billing practices, few utilities record or store reactive power demand measurements from their AMI. When reactive power measurements are unavailable, simplifying assumptions are often applied for load modeling purposes, such as applying constant power factors to the loads. The objective of this work is to quantify the impact that reactive power load modeling practices can have on distribution system analysis, with a particular focus on evaluating the behaviors of distributed photovoltaic (PV) systems with advanced inverter capabilities. Quasi-static time-series simulations were conducted after applying a variety of reactive power load modeling approaches, and the results were compared to a baseline scenario in which real and reactive power measurements were available at all customer locations on the circuit. Overall, it was observed that applying constant power factors to loads can lead to significant errors when evaluating customer voltage profiles, but that performing per-phase time-series reactive power allocation can be utilized to reduce these errors by about 6x, on average, resulting in more accurate evaluations of advanced inverter functions.

More Details

AI-Based Protective Relays for Electric Grid Resiliency

Reno, Matthew J.; Blakely, Logan

The protection systems (circuit breakers, relays, reclosers, and fuses) of the electric grid are the primary component responding to resilience events, ranging from common storms to extreme events. The protective equipment must detect and operate very quickly, generally <0.25 seconds, to remove faults in the system before the system goes unstable or additional equipment is damaged. The burden on protection systems is increasing as the complexity of the grid increases; renewable energy resources, particularly inverter-based resources (IBR) and increasing electrification all contribute to a more complex grid landscape for protection devices. In addition, there are increasing threats from natural disasters, aging infrastructure, and manmade attacks that can cause faults and disturbances in the electric grid. The challenge for the application of AI into power system protection is that events are rare and unpredictable. In order to improve the resiliency of the electric grid, AI has to be able to learn from very little data. During an extreme disaster, it may not be important that the perfect, most optimal action is taken, but AI must be guaranteed to always respond by moving the grid toward a more stable state during unseen events.

More Details

DC microgrid fault detection using multiresolution analysis of traveling waves

International Journal of Electrical Power and Energy Systems

Montoya, Rudy; Poudel, Binod P.; Bidram, Ali; Reno, Matthew J.

Fast detection and isolation of faults in a DC microgrid is of particular importance. Fast tripping protection (i) increases the lifetime of power electronics (PE) switches by avoiding high fault current magnitudes and (ii) enhances the controllability of PE converters. This paper proposes a traveling wave (TW) based scheme for fast tripping protection of DC microgrids. The proposed scheme utilizes a discrete wavelet transform (DWT) to calculate the high-frequency components of DC fault currents. Multiresolution analysis (MRA) using DWT is utilized to detect TW components for different frequency ranges. The Parseval energy of the MRA coefficients are then calculated to demonstrate a quantitative relationship between the fault current signal energy and coefficients’ energy. The calculated Parseval energy values are used to train a Support Vector Machine classifier to identify the fault type and a Gaussian Process regression engine to estimate the fault location on the DC cables. The proposed approach is verified by simulating two microgrid test systems in PSCAD/EMTDC.

More Details

Low Voltage Network Protection Utility Workshop (Summary and Next Steps)

Cheng, Zheyuan C.; Udren, Eric A.; Holbach, Juergen H.; Hart, David B.; Reno, Matthew J.; Ropp, Michael E.

Increased penetration of Distributed Energy Resources and microgrids have fundamentally changed the operation al characteristics of Low Voltage (LV) network systems. Current LV network protection philosophy and practice are due for a significant re vamp to keep up with changing operating conditions. This workshop invites four of the major LV network users in the US to discuss the challenges they face today and the new technologies they have been experimenting with in light of this workshop discussion, use cases for further hardware-in-the-loop testing efforts are proposed to evaluate new LV network protection solutions.

More Details

Roadmap for Advancement of Low-Voltage Secondary Distribution Network Protection

Udren, Eric A.; Hart, David B.; Reno, Matthew J.; Ropp, Michael E.

Downtown low-voltage (LV) distribution networks are generally protected with network protectors that detect faults by restricting reverse power flow out of the network. This creates protection challenges for protecting the system as new smart grid technologies and distributed generation are installed. This report summarizes well-established methods for the control and protection of LV secondary network systems and spot networks, including operating features of network relays. Some current challenges and findings are presented from interviews with three utilities, PHI PEPCO, Oncor Energy Delivery, and Consolidated Edison Company of New York. Opportunities for technical exploration are presented with an assessment of the importance or value and the difficulty or cost. Finally, this leads to some recommendations for research to improve protection in secondary networks.

More Details

IMoFi - Intelligent Model Fidelity: Physics-Based Data-Driven Grid Modeling to Accelerate Accurate PV Integration (Final Report)

Reno, Matthew J.; Blakely, Logan; Trevizan, Rodrigo D.; Pena, Bethany D.; Lave, Matthew S.; Azzolini, Joseph A.; Yusuf, Jubair Y.; Jones, Christian B.; Furlani Bastos, Alvaro F.; Chalamala, Rohit C.; Korkali, Mert K.; Sun, Chih-Che S.; Donadee, Jonathan D.; Stewart, Emma M.; Donde, Vaibhav D.; Peppanen, Jouni P.; Hernandez, Miguel H.; Deboever, Jeremiah D.; Rocha, Celso R.; Rylander, Matthew R.; Siratarnsophon, Piyapath S.; Grijalva, Santiago G.; Talkington, Samuel T.; Gomez-Peces, Cristian G.; Mason, Karl M.; Vejdan, Sadegh V.; Khan, Ahmad U.; Mbeleg, Jordan S.; Ashok, Kavya A.; Divan, Deepak D.; Li, Feng L.; Therrien, Francis T.; Jacques, Patrick J.; Rao, Vittal S.; Francis, Cody F.; Zaragoza, Nicholas Z.; Nordy, David N.; Glass, Jim G.

This report summarizes the work performed under a project funded by U.S. DOE Solar Energy Technologies Office (SETO) to use grid edge measurements to calibrate distribution system models for improved planning and grid integration of solar PV. Several physics-based data-driven algorithms are developed to identify inaccuracies in models and to bring increased visibility into distribution system planning. This includes phase identification, secondary system topology and parameter estimation, meter-to-transformer pairing, medium-voltage reconfiguration detection, determination of regulator and capacitor settings, PV system detection, PV parameter and setting estimation, PV dynamic models, and improved load modeling. Each of the algorithms is tested using simulation data and demonstrated on real feeders with our utility partners. The final algorithms demonstrate the potential for future planning and operations of the electric power grid to be more automated and data-driven, with more granularity, higher accuracy, and more comprehensive visibility into the system.

More Details

Prediction of Relay Settings in an Adaptive Protection System

2022 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2022

Summers, Adam; Patel, Trupal; Matthews, Ronald C.; Reno, Matthew J.

Communication-assisted adaptive protection can improve the speed and selectivity of the protection system. However, in the event, that communication is disrupted to the relays from the centralized adaptive protection system, predicting the local relay protection settings is a viable alternative. This work evaluates the potential for machine learning to overcome these challenges by using the Prophet algorithm programmed into each relay to individually predict the time-dial (TDS) and pickup current (IPICKUP) settings. A modified IEEE 123 feeder was used to generate the data needed to train and test the Prophet algorithm to individually predict the TDS and IPICKUP settings. The models were evaluated using the mean average percentage error (MAPE) and the root mean squared error (RMSE) as metrics. The results show that the algorithms could accurately predict IPICKUP setting with an average MAPE accuracy of 99.961%, and the TDS setting with a average MAPE accuracy of 94.32% which is sufficient for protection parameter prediction.

More Details

Zonal Machine Learning-Based Protection for Distribution Systems

IEEE Access

Poudel, Binod P.; Bidram, Ali; Reno, Matthew J.; Summers, Adam

Adaptive protection is defined as a real-time system that can modify the protective actions according to the changes in the system condition. An adaptive protection system (APS) is conventionally coordinated through a central management system located at the distribution system substation. An APS depends significantly on the communication infrastructure to monitor the latest status of the electric power grid and send appropriate settings to all of the protection relays existing in the grid. This makes an APS highly vulnerable to communication system failures (e.g., broken communication links due to natural disasters as well as wide-range cyber-attacks). To this end, this paper presents the addition of local adaptive modular protection (LAMP) units to the protection system to guarantee its reliable operation under extreme events when the operation of the APS is compromised. LAMP units operate in parallel with the conventional APS. As a backup, if APS fails to operate because of an issue in the communication system, LAMP units can accommodate a reliable fault detection and location on behalf of the protection relay. The performance of the proposed APS is verified using IEEE 123 node test system.

More Details

Testing Machine Learned Fault Detection and Classification on a DC Microgrid

2022 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2022

Ojetola, Samuel; Reno, Matthew J.; Flicker, Jack D.; Bauer, Daniel; Stoltzfuz, David

Interest in the application of DC Microgrids to distribution systems have been spurred by the continued rise of renewable energy resources and the dependence on DC loads. However, in comparison to AC systems, the lack of natural zero crossing in DC Microgrids makes the interruption of fault currents with fuses and circuit breakers more difficult. DC faults can cause severe damage to voltage-source converters within few milliseconds, hence, the need to quickly detect and isolate the fault. In this paper, the potential for five different Machine Learning (ML) classifiers to identify fault type and fault resistance in a DC Microgrid is explored. The ML algorithms are trained using simulated fault data recorded from a 750 VDC Microgrid modeled in PSCAD/EMTDC. The performance of the trained algorithms are tested using real fault data gathered from an operational DC Microgrid located on the Kirtland Air Force Base. Of the five ML algorithms, three could detect the fault and determine the fault type with at least 99% accuracy, and only one could estimate the fault resistance with at least 99% accuracy. By performing a self-learning monitoring and decision making analysis, protection relays equipped with ML algorithms can quickly detect and isolate faults to improve the protection operations on DC Microgrids.

More Details

Switch Location Identification for Integrating a Distant Photovoltaic Array Into a Microgrid

IEEE Access

Jones, Christian B.; Theristis, Marios; Darbali-Zamora, Rachid; Ropp, Michael E.; Reno, Matthew J.

Many Electric Power Systems (EPS) already include geographically dispersed photovoltaic (PV) systems. These PV systems may not be co-located with highest-priority loads and, thus, easily integrated into a microgrid; rather PV systems and priority loads may be far away from one another. Furthermore, because of the existing EPS configuration, non-critical loads between the distant PV and critical load(s) cannot be selectively disconnected. To achieve this, the proposed approach finds ideal switch locations by first defining the path between the critical load and a large PV system, then identifies all potential new switch locations along this path, and finally discovers switch locations for a particular budget by finding the ones the produce the lowest Loss of Load Probability (LOLP), which is when load exceed generation. Discovery of the switches with the lowest LOLP involves a Particle Swarm Optimization (PSO) implementation. The objective of the PSO is to minimize the microgird’s LOLP. The approach assumes dynamic microgrid operations, where both the critical and non-critical loads are powered during the day and only the critical load at night. To evaluate the approach, this paper includes a case study that uses the topology and Advanced Metering Infrastructure (AMI) data from an actual EPS. For this example, the assessment found new switch locations that reduced the LOLP by up to 50% for two distant PV location scenarios.

More Details

Estimation of PV Location based on Voltage Sensitivities in Distribution Systems with Discrete Voltage Regulation Equipment

2021 IEEE Madrid PowerTech, PowerTech 2021 - Conference Proceedings

Gomez-Peces, Cristian; Grijalva, Santiago; Reno, Matthew J.; Blakely, Logan

High penetration of solar photovoltaics can have a significant impact on the power flows and voltages in distribution systems. In order to support distribution grid planning, control and optimization, it is imperative for utilities to maintain an accurate database of the locations and sizes of PV systems. This paper extends previous work on methods to estimate the location of PV systems based on knowledge of the distribution network model and availability of voltage magnitude measurement streams. The proposed method leverages the expected impact of solar injection variations on the circuit voltage and takes into account the operation and impact of changes in voltage due to discrete voltage regulation equipment (VRE). The estimation model enables determining the most likely location of PV systems, as well as voltage regulator tap and switching capacitors state changes. The method has been tested for individual and multiple PV system, using the Chi-Square test as a metric to evaluate the goodness of fit. Simulations on the IEEE 13-bus and IEEE 123-bus distribution feeders demonstrate the ability of the method to provide consistent estimations of PV locations as well as VRE actions.

More Details

Performance of a Grid-Forming Inverter under Balanced and Unbalanced Voltage Phase Angle Jump Conditions

Conference Record of the IEEE Photovoltaic Specialists Conference

Darbali-Zamora, Rachid; Gurule, Nicholas S.; Hernandez-Alvidrez, Javier; Gonzalez, Sigifredo G.; Reno, Matthew J.

Renewable energy has become a viable solution for reducing the harmful effects that fossil fuels have on our environment, prompting utilities to replace traditional synchronous generators (SG) with more inverter-based devices that can provide clean energy. One of the biggest challenges utilities are facing is that by replacing SG, there is a reduction in the systems' mechanical inertia, making them vulnerable to frequency instability. Grid-forming inverters (GFMI) have the ability to create and regulate their own voltage reference in a manner that helps stabilize system frequency. As an emerging technology, there is a need for understanding their dynamic behavior when subjected to abrupt changes. This paper evaluates the performance of a GFMI when subjected to voltage phase jump conditions. Experimental results are presented for the GFMI subjected to both balanced and unbalanced voltage phase jump events in both P/Q and V/f modes.

More Details

The Effects of Inverter Clipping and Curtailment-Inducing Grid Support Functions on PV Planning Decisions

Conference Record of the IEEE Photovoltaic Specialists Conference

Azzolini, Joseph A.; Reno, Matthew J.

Recent trends in PV economics and advanced inverter functionalities have contributed to the rapid growth in PV adoption; PV modules have gotten much cheaper and advanced inverters can deliver a range of services in support of grid operations. However, these phenomena also provide conditions for PV curtailment, where high penetrations of distributed PV often necessitate the use of advanced inverter functions with VAR priority to address abnormal grid conditions like over- and under-voltages. This paper presents a detailed energy loss analysis, using a combination of open-source PV modeling tools and high-resolution time-series simulations, to place the magnitude of clipped and curtailed PV energy in context with other operational sources of PV energy loss. The simulations were conducted on a realistic distribution circuit, modified to include utility load data and 341 modeled PV systems at 25% of the customer locations. The results revealed that the magnitude of clipping losses often overshadows that of curtailment but, on average, both were among the lowest contributors to total annual PV energy loss. However, combined clipping and curtailment loss are likely to become more prevalent as recent trends continue.

More Details

Distribution System State Estimation Sensitivity to Errors in Phase Connections

Conference Record of the IEEE Photovoltaic Specialists Conference

Trevizan, Rodrigo D.; Reno, Matthew J.

High penetration of distributed energy resources presents challenges for monitoring and control of power distribution systems. Some of these problems might be solved through accurate monitoring of distribution systems, such as what can be achieved with distribution system state estimation (DSSE). With the recent large-scale deployment of advanced metering infrastructure associated with existing SCADA measurements, DSSE may become a reality in many utilities. In this paper, we present a sensitivity analysis of DSSE with respect to phase mislabeling of single-phase service transformers, another class of errors distribution system operators are faced with regularly. The results show DSSE is more robust to phase label errors than a power flow-based technique, which would allow distribution engineers to more accurately capture the impacts and benefits of distributed PV.

More Details
Results 1–25 of 256
Results 1–25 of 256