Publications

Results 1–25 of 62

Search results

Jump to search filters

GDSA Repository Systems Analysis Investigations in FY 2023

LaForce, Tara; Basurto, Eduardo B.; Bigler, Lisa; Chang, Kyung W.; Ebeida, Mohamed S.; Jayne, Richard S.; Leone, Rosemary C.; Mariner, Paul M.; Sharpe, Jeff

This report describes specific activities in the Fiscal Year (FY) 2023 associated with the Geologic Disposal Safety Assessment (GDSA) Repository Systems Analysis (RSA) work package funded by the Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Spent Fuel and Waste Disposition (SFWD).

More Details

Modeling-Based Assessment of Deep Seismic Potential Induced by Geologic Carbon Storage

Seismological Research Letters

Chang, Kyung W.; Yoon, Hongkyu Y.

Induced seismicity is an inherent risk associated with geologic carbon storage (GCS) in deep rock formations that could contain undetected faults prone to failure. Modeling-based risk assessment has been implemented to quantify the potential of injection-induced seismicity, but typically simplified multiscale geologic features or neglected multiphysics coupled mechanisms because of the uncertainty in field data and computational cost of field-scale simulations, which may limit the reliable prediction of seismic hazard caused by industrial-scale CO2 storage. The degree of lateral continuity of the stratigraphic interbedding below the reservoir and depth-dependent fault permeability can enhance or inhibit pore-pressure diffusion and corresponding poroelastic stressing along a basement fault. This study presents a rigorous modeling scheme with optimal geological and operational parameters needed to be considered in seismic monitoring and mitigation strategies for safe GCS.

More Details

Geomechanical Tool for Evaluating Casing Deformation in Storage Caverns in Salt Dome

57th US Rock Mechanics/Geomechanics Symposium

Ross, Tonya; Chang, Kyung W.; Sobolik, Steven R.

Sandia National Laboratories has conducted geomechanical analysis to evaluate the performance of the Strategic Petroleum Reserve by modeling the viscoplastic, or creep, behavior of the salt in which their oil-storage caverns reside. The operation-driven imbalance between fluid pressure within the salt cavern and in-situ stress acting on the surrounding salt can cause the salt to creep, potentially leading to a loss of the cavern volume and consequently deformation of borehole casings. Therefore, a greater understanding of salt creep's behavior on borehole casing needs to be addressed to drive cavern operations decisions. To evaluate potential casing damage mechanisms with variation in geological constraints (e.g. material characteristics of salt or caprock) or physical mechanisms of cavern leakage, we developed a generic model with a layered and domal geometry including nine caverns, rather than use a specific field-site model, to save computational costs. The geomechanical outputs, such as cavern volume changes, vertical strain along the dome and caprock above the cavern and vertical displacement at the surface or cavern top, quantifies the impact of material parameters and cavern locations as well as multiple operations in multiple caverns on an individual cavern stability.

More Details

Machine Learning Surrogates of a Fuel Matrix Degradation Process Model for Performance Assessment of a Nuclear Waste Repository

Nuclear Technology

Debusschere, Bert D.; Seidl, Daniel T.; Berg, Timothy M.; Chang, Kyung W.; Leone, Rosemary C.; Swiler, Laura P.; Mariner, Paul M.

Spent nuclear fuel repository simulations are currently not able to incorporate detailed fuel matrix degradation (FMD) process models due to their computational cost, especially when large numbers of waste packages breach. The current paper uses machine learning to develop artificial neural network and k-nearest neighbor regression surrogate models that approximate the detailed FMD process model while being computationally much faster to evaluate. Using fuel cask temperature, dose rate, and the environmental concentrations of CO32−, O2, Fe2+, and H2 as inputs, these surrogates show good agreement with the FMD process model predictions of the UO2 degradation rate for conditions within the range of the training data. A demonstration in a full-scale shale repository reference case simulation shows that the incorporation of the surrogate models captures local and temporal environmental effects on fuel degradation rates while retaining good computational efficiency.

More Details

Permeability-controlled migration of induced seismicity to deeper depths near Venus in North Texas

Scientific Reports

Chang, Kyung W.; Yoon, Hongkyu Y.

Migration of seismic events to deeper depths along basement faults over time has been observed in the wastewater injection sites, which can be correlated spatially and temporally to the propagation or retardation of pressure fronts and corresponding poroelastic response to given operation history. The seismicity rate model has been suggested as a physical indicator for the potential of earthquake nucleation along faults by quantifying poroelastic response to multiple well operations. Our field-scale model indicates that migrating patterns of 2015–2018 seismicity observed near Venus, TX are likely attributed to spatio-temporal evolution of Coulomb stressing rate constrained by the fault permeability. Even after reducing injection volumes since 2015, pore pressure continues to diffuse and steady transfer of elastic energy to the deep fault zone increases stressing rate consistently that can induce more frequent earthquakes at large distance scales. Sensitivity tests with variation in fault permeability show that (1) slow diffusion along a low-permeability fault limits earthquake nucleation near the injection interval or (2) rapid relaxation of pressure buildup within a high-permeability fault, caused by reducing injection volumes, may mitigate the seismic potential promptly.

More Details

GDSA Repository Systems Analysis Investigations in FY2022

LaForce, Tara; Basurto, Eduardo B.; Chang, Kyung W.; Ebeida, Mohamed S.; Eymold, William; Faucett, Christopher F.; Jayne, Richard S.; Kucinski, Nicholas; Leone, Rosemary C.; Mariner, Paul M.; Laros, James H.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy Office of Nuclear Energy, Office of Spent Fuel and Waste Disposition (SFWD), has been conducting research and development on generic deep geologic disposal systems (i.e., geologic repositories). This report describes specific activities in the Fiscal Year (FY) 2022 associated with the Geologic Disposal Safety Assessment (GDSA) Repository Systems Analysis (RSA) work package within the SFWST Campaign. The overall objective of the GDSA RSA work package is to develop generic deep geologic repository concepts and system performance assessment (PA) models in several host-rock environments, and to simulate and analyze these generic repository concepts and models using the GDSA Framework toolkit, and other tools as needed.

More Details

Physically rigorous reduced-order flow models of fractured subsurface environments without explosive computational cost

Beskardes, G.D.; Weiss, Chester J.; Darrh, Andrea N.; Kuhlman, Kristopher L.; Chang, Kyung W.

Fractured media models comprise discontinuities of multiple lengths (e.g. fracture lengths and apertures, wellbore area) that fall into the relatively insignificant length scales spanning millimeter-scale fractures to centimeter-scale wellbores in comparison to the extensions of the field of interest, and challenge the conventional discretization methods imposing highly-fine meshing and formidably large numerical cost. By utilizing the recent developments in the finite element analysis of electromagnetics that allow to represent material properties on a hierarchical geometry, this project develops computational capabilities to model fluid flow, heat conduction, transport and induced polarization in large-scale geologic environments that possess geometrically-complex fractures and man-made infrastructures without explosive computational cost. The computational efficiency and robustness of this multi-physics modeling tool are demonstrated by considering various highly-realistic complex geologic environments that are common in many energy and national security related engineering problems.

More Details

Computational Analysis of Coupled Geoscience Processes in Fractured and Deformable Media

Yoon, Hongkyu Y.; Kucala, Alec K.; Chang, Kyung W.; Martinez, Mario J.; Laros, James H.; Kadeethum, T.; Warren, Maria; Wilson, Jennifer E.; Broome, Scott T.; Stewart, Lauren K.; Estrada, Diana; Bouklas, Nicholas; Fuhg, Jan N.

Prediction of flow, transport, and deformation in fractured and porous media is critical to improving our scientific understanding of coupled thermal-hydrological-mechanical processes related to subsurface energy storage and recovery, nonproliferation, and nuclear waste storage. Especially, earth rock response to changes in pressure and stress has remained a critically challenging task. In this work, we advance computational capabilities for coupled processes in fractured and porous media using Sandia Sierra Multiphysics software through verification and validation problems such as poro-elasticity, elasto-plasticity and thermo-poroelasticity. We apply Sierra software for geologic carbon storage, fluid injection/extraction, and enhanced geothermal systems. We also significantly improve machine learning approaches through latent space and self-supervised learning. Additionally, we develop new experimental technique for evaluating dynamics of compacted soils at an intermediate scale. Overall, this project will enable us to systematically measure and control the earth system response to changes in stress and pressure due to subsurface energy activities.

More Details

DPC Direct Disposal Postclosure Thermal Modeling

Chang, Kyung W.; Jones, Philip G.

Performance of geologic radioactive waste repositories depends on near-field and far-field processes, including km-scale flow and transport in engineered and natural barriers, that may require simulations of up to 1 M years of regulatory period. For a relatively short time span (less than 1000 years), the thermohydro-mechanical-chemical (THMC) coupled processes caused by heat from the waste package will influence near-field multiphase flow, chemical/reactive transport, and mechanical behaviors in the repository system. This study integrates the heat-driven perturbations in thermo-hydro-mechanical characteristics into thermo-hydro-chemical simulations using PFLOTRAN to reduce dimensionality and improve computational efficiency by implementing functions of stress-dependent permeability and saturation-temperature-dependent thermal conductivity. These process couplings are developed for spent nuclear fuel in dual-purpose canisters in two different hypothetical repositories: a shale repository and a salt repository.

More Details

Potential Seismicity Along Basement Faults Induced by Geological Carbon Sequestration

Geophysical Research Letters

Chang, Kyung W.; Yoon, Hongkyu Y.; Martinez, Mario A.

Large-scale CO2 sequestration into geological formations has been suggested to reduce CO2 emissions from industrial activities. However, much like enhanced geothermal stimulation and wastewater injection, CO2 sequestration has a potential to induce earthquake along weak faults, which can be considered a negative impact on safety and public opinion. This study shows the physical mechanisms of potential seismic hazards along basement faults driven by CO2 sequestration under variation in geological and operational constraints. Specifically we compare the poroelastic behaviors between multiphase flow and single-phase flow cases, highlighting specific needs of evaluating induced seismicity associated with CO2 sequestration. In contrast to single-phase injection scenario, slower migration of the CO2 plume than pressure pulse may delay accumulation of pressure and stress along basement faults that may not be mitigated immediately by shut-in of injection. The impact of multiphase flow system, therefore, needs to be considered for proper monitoring and mitigation strategies.

More Details

Poroelastic stressing and pressure diffusion along faults induced by geological carbon dioxide storage

56th U.S. Rock Mechanics/Geomechanics Symposium

Chang, Kyung W.; Yoon, Hongkyu Y.; Martinez, Mario A.

Injecting CO2 into a deep geological formation (i.e., geological carbon storage, GCS) can induce earthquakes along preexisting faults in the earth's upper crust. Seismic survey and regional geo-structure analysis are typically employed to map the faults prone to earthquakes prior to injection. However, earthquakes induced by fluid injection from other subsurface energy storage and recovery activities show that systematic evaluation of the potential of induced seismicity associated with GCS is necessary. This study mechanistically investigates how multiphysical interaction among injected CO2, preexisting pore fluids and rock matrix alters stress states on faults and which physical mechanisms can nucleate earthquakes along the faults. Increased injection pressure is needed to overcome capillary entry pressure of the fault zone, driven by the contrast of fluids' wetting characteristics. Accumulated CO2 within the reservoir delays post shut-in reduction in pressure and stress fields along the fault that may enhance the potential for earthquake nucleation after terminating injection operations. Elastic energy generated by coupled processes transfers to low-permeability or hydraulically isolated basement faults, which can initiate slip of the faults. Our findings from generic studies suggest that geomechanical simulations integrated with multiphase flow system are essential to detect deformation-driven signals and mitigate potential seismic hazards associated with CO2 injection.

More Details

Reduced-order THMC coupled simulation of nuclear waste disposal in shale

56th U.S. Rock Mechanics/Geomechanics Symposium

Chang, Kyung W.; LaForce, Tara; Nole, Michael A.; Stein, Emily S.

Thermal and hydrological behaviors of multiphase pore fluids in the presence of heat cause the near-field thermo-hydro-mechanicalchemical (THMC) coupled processes that can influence performance of geologic radioactive waste repositories. This hydro-thermal impacts may perturb the geomechanical stability of the disturbed rock zone (DRZ) surrounding the drifts in a shale-hosted deep geologic repository, which links heat/fluid flow and chemical/reactive transport between the engineered barrier system (EBS) and the host rock. This work focuses on integrating the effects of a near-field geomechanical process driven by buffer swelling into TH simulations to reduce dimensionality and improve computational efficiency. This geomechanical process can reduce the DRZ permeability, potentially influencing the rate of radionuclide transport and exchange with corrosive species in host rock groundwater that could accelerate waste package degradation. The sensitivity test with variation in host rock permeability indicates that less permeable shale retards re-saturation of the buffer, such that slower increase of swelling pressure delays reduction of DRZ permeability.

More Details

Reduced-order modeling of near-field THMC coupled processes for nuclear waste repositories in shale

Computers and Geotechnics

Chang, Kyung W.; Nole, Michael A.; Stein, Emily S.

Performance assessment (PA) of geologic radioactive waste repositories requires three-dimensional simulation of highly nonlinear, thermo-hydro-mechanical-chemical (THMC), multiphase flow and transport processes across many kilometers and over tens to hundreds of thousands of years. Integrating the effects of a near-field geomechanical process (i.e. buffer swelling) into coupled THC simulations through reduced-order modeling, rather than through fully coupled geomechanics, can reduce the dimensionality of the problem and improve computational efficiency. In this study, PFLOTRAN simulations model a single waste package in a shale host rock repository, where re-saturation of a bentonite buffer causes the buffer to swell and exert stress on a highly fractured disturbed rock zone (DRZ). Three types of stress-dependent permeability functions (exponential, modified cubic, and Two-part Hooke's law models) are implemented to describe mechanical characteristics of the system. Our modeling study suggests that compressing fractures reduces DRZ permeability, which could influence the rate of radionuclide transport and exchange with corrosive species in host rock groundwater that could accelerate waste package degradation. Less permeable shale host rock delays buffer swelling, consequently retarding DRZ permeability reduction as well as chemical transport within the barrier system.

More Details

GDSA Framework Development and Process Model Integration FY2021

Mariner, Paul M.; Berg, Timothy M.; Debusschere, Bert D.; Eckert, Aubrey C.; Harvey, Jacob H.; LaForce, Tara; Leone, Rosemary C.; Mills, Melissa M.; Nole, Michael A.; Park, Heeho D.; Perry, F.V.; Seidl, Daniel T.; Swiler, Laura P.; Chang, Kyung W.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and highlevel nuclear waste (HLW). A high priority for SFWST disposal R&D is disposal system modeling (DOE 2012, Table 6; Sevougian et al. 2019). The SFWST Geologic Disposal Safety Assessment (GDSA) work package is charged with developing a disposal system modeling and analysis capability for evaluating generic disposal system performance for nuclear waste in geologic media.

More Details
Results 1–25 of 62
Results 1–25 of 62