Publications

17 Results

Search results

Jump to search filters

Biotic countermeasures that rescue Nannochloropsis gaditana from a Bacillus safensis infection

Frontiers in Microbiology

Humphrey, Brittany M.; MacKenzie, Morgan E.; Lobitz, Mia; Schambach, Jenna; Lasley, Greyson; Kolker, Stephanie D.; Ricken, James B.; Monteith, Haley M.; Williams, Kelly P.; Smallwood, Chuck R.; Cahill, Jesse L.

The natural assemblage of a symbiotic bacterial microbiome (bacteriome) with microalgae in marine ecosystems is now being investigated as a means to increase algal productivity for industry. When algae are grown in open pond settings, biological contamination causes an estimated 30% loss of the algal crop. Therefore, new crop protection strategies that do not disrupt the native algal bacteriome are needed to produce reliable, high-yield algal biomass. Bacteriophages offer an unexplored solution to treat bacterial pathogenicity in algal cultures because they can eliminate a single species without affecting the bacteriome. To address this, we identified a highly virulent pathogen of the microalga Nannochloropsis gaditana, the bacterium Bacillus safensis, and demonstrated rescue of the microalgae from the pathogen using phage. 16S rRNA amplicon sequencing showed that phage treatment did not alter the composition of the bacteriome. It is widely suspected that the algal bacteriome could play a protective role against bacterial pathogens. To test this, we compared the susceptibility of a bacteriome-attenuated N. gaditana culture challenged with B. safensis to a N. gaditana culture carrying a growth-promoting bacteriome. We showed that the loss of the bacteriome increased the susceptibility of N. gaditana to the pathogen. Transplanting the microalgal bacteriome to the bacteriome-attenuated culture reconstituted the protective effect of the bacteriome. Finally, the success of phage treatment was dependent on the presence of beneficial bacteriome. This study introduces two synergistic countermeasures against bacterial pathogenicity in algal cultures and a tractable model for studying interactions between microalgae, phages, pathogens, and the algae microbiome.

More Details

CERES: CRISPR Engineering for the Rapid Enhancement of Strains

Ruffing, Anne R.; Podlevsky, Joshua P.; Krishnakumar, Raga K.; Smallwood, Chuck R.; Dallo, Tessa C.; Torres, Xavier M.; Kolker, Stephanie; Morgan, John; King, Nathaphon Y.H.; Marsing, Melissa

Previous strain development efforts for cyanobacteria have failed to achieve the necessary productivities needed to support economic biofuel production. We proposed to develop CRISPR Engineering for Rapid Enhancement of Strains (CERES). We developed genetic and computational tools to enable future high-throughput screening of CRISPR interference (CRISPRi) libraries in the cyanobacterium Synechococcus sp. PCC 7002, including: (1) Operon- SEQer: an ensemble of algorithms for predicting operon pairs using RNA-seq data, (2) experimental characterization and machine learning prediction of gRNA design rules for CRISPRi, and (3) a shuttle vector for gene expression. These tools lay the foundation for CRISPR library screening to develop cyanobacterial strains that are optimized for growth or metabolite production under a wide range of environmental conditions. The optimization of cyanobacterial strains will directly advance U.S. energy and climate security by enabling domestic biofuel production while simultaneously mitigating atmospheric greenhouse gases through photoautotrophic fixation of carbon dioxide.

More Details

Engineering Forisome Scaffolds: Elucidating Spatial Self-Assembly Patterning of Bio-inorganic Complexes

Smallwood, Chuck R.; Podlevsky, Joshua P.; Snow, Todd; Ryan, Emmarie C.

Organisms can synthesize biomaterials incorporating an array of naturally occurring elements while overcoming challenges and insults. Although, it is known that most cellular biomaterials are synthesized in specialized cellular compartments, there are knowledge gaps about how organic/inorganic biomaterial synthesis is orchestrated inside cells. In addition, there is great potential in understanding how individual monomers can self-assembly into organized patterns to form responsive biomaterials. Forisomes are a natural responsive biomaterial found in legume plants that serve as a plug sieve element in the plant phloem that undergo anisotropic conformational changes by rapid (<1 s) ATP-independent from condensed spindle to plug-like form, triggered by the influx of Ca2+. Addressing principles of forisome synthesis and assembly will determine how biomaterials containing inorganic elements self-assemble and conduct chemical modification to produce biomaterials or undergo biomineralization. We employ transcription and translation (TXTL) using cell-free expression systems for forisome monomer expression, self-assembly, and pattern probing. We conducted experiments to precisely control forisome proteins synthesis of various monomers SEO1, SEO2, SEO3, and SEO4 to explore self- assembly. We demonstrate forisome self-assembly of the SEO monomers is possible and indicate unique monomer fluorescent labeling patterns that require additional analysis. We investigated locations and linkers for adding tetracysteine tag fluorophore probes to determine impacts of self-assembly and anisotropic conformational changes.

More Details

Predicting Future Disease Burden in a Rapidly Changing Climate

Powell, Amy J.; Kalashnikova, Irina; Davis, Warren L.; Peterson, Kara J.; Rempe, Susan R.; Smallwood, Chuck R.; Roesler, Erika L.

The interplay of a rapidly changing climate and infectious disease occurrence is emerging as a critical topic, requiring investigation of possible direct, as well as indirect, connections between disease processes and climate-related variation and phenomena. First, we introduce and overview three infectious disease exemplars (dengue, influenza, valley fever) representing different transmission classes (insect-vectored, human-to-human, environmentally-transmitted) to illuminate the complex and significant interplay between climate disease processes, as well as to motivate discussion of how Sandia can transform the field, and change our understanding of climate-driven infectious disease spread. We also review state-of-the-art epidemiological and climate modeling approaches, together with data analytics and machine learning methods, potentially relevant to climate and infectious disease studies. We synthesize the modeling and disease exemplars information, suggesting initial avenues for research and development (R&D) in this area, and propose potential sponsors for this work. Whether directly or indirectly, it is certain that a rapidly changing climate will alter global disease burden. The trajectory of climate change is an important control on this burden, from local, to regional and global scales. The efforts proposed herein respond to the National Research Councils call for the creation of a multidisciplinary institute that would address critical aspects of these interlocking, cascading crises.

More Details

Calcareous organic matter coatings sequester siderophores in alkaline soils

Science of the Total Environment

Smallwood, Chuck R.; Boiteau, Rene M.; Kukkadapu, Ravi; Cliff, John B.; Kovarik, Libor; Wirth, Mark G.; Engelhard, Mark H.; Varga, Tamas; Perea, Daniel E.; Wietsma, Thomas; Moran, James J.; Hofmockel, Kirsten S.

Although most studies of organic matter (OM) stabilization in soils have focused on adsorption to aluminosilicate and iron-oxide minerals due to their strong interactions with organic nucleophiles, stabilization within alkaline soils has been empirically correlated with exchangeable Ca. Yet the extent of competing processes within natural soils remains unclear because of inadequate characterization of soil mineralogy and OM distribution within the soil in relation to minerals, particularly in C poor alkaline soils. In this study, we employed bulk and surface-sensitive spectroscopic methods including X-ray diffraction, 57Fe-Mössbauer, and X-ray photoemission spectroscopy (XPS), and transmission electron microscopy (TEM) methods to investigate the minerology and soil organic C and N distribution on individual fine particles within an alkaline soil. Microscopy and XPS analyses demonstrated preferential sorption of Ca-containing OM onto surfaces of Fe-oxides and calcite. This result was unexpected given that the bulk combined amounts of quartz and Fe-containing feldspars of the soil constitute ~90% of total minerals and the surface atomic composition was largely Fe and Al (>10% combined) compared to Ca (4.2%). Soil sorption experiments were conducted with two siderophores, pyoverdine and enterobactin, to evaluate the adsorption of organic molecules with functional groups that strongly and preferentially bind Fe. A greater fraction of pyoverdine was adsorbed compared to enterobactin, which is smaller, less polar, and has a lower aqueous solubility. Using NanoSIMS to map the distribution of isotopically-labeled siderophores, we observed correlations with Ca and Fe, along with strong isotopic dilution with native C, indicating associations with OM coatings rather than with bare mineral surfaces. We propose a mechanism of adsorption by which organics aggregate within alkaline soils via cation bridging, favoring the stabilization of larger molecules with a greater number of nucleophilic functional groups.

More Details
17 Results
17 Results