Composite materials with different microstructural material symmetries are common in engineering applications where grain structure, alloying and particle/fiber packing are optimized via controlled manufacturing. In fact these microstructural tunings can be done throughout a part to achieve functional gradation and optimization at a structural level. To predict the performance of particular microstructural configuration and thereby overall performance, constitutive models of materials with microstructure are needed. In this work we provide neural network architectures that provide effective homogenization models of materials with anisotropic components. These models satisfy equivariance and material symmetry principles inherently through a combination of equivariant and tensor basis operations. We demonstrate them on datasets of stochastic volume elements with different textures and phases where the material undergoes elastic and plastic deformation, and show that the these network architectures provide significant performance improvements.
Computational singular perturbation (CSP) is a method to analyze dynamical systems. It targets the decoupling of fast and slow dynamics using an alternate linear expansion of the right-hand side of the governing equations based on eigenanalysis of the associated Jacobian matrix. This representation facilitates diagnostic analysis, detection and control of stiffness, and the development of simplified models. We have implemented CSP in a C++ open-source library CSPlib1 using the Kokkos2 parallel programming model to address portability across diverse heterogeneous computing platforms, i.e., multi/many-core CPUs and GPUs. We describe the CSPlib implementation and present its computational performance across different computing platforms using several test problems. Specifically, we test the CSPlib performance for a constant pressure ignition reactor model on different architectures, including IBM Power 9, Intel Xeon Skylake, and NVIDIA V100 GPU. The size of the chemical kinetic mechanism is varied in these tests. As expected, the Jacobian matrix evaluation, the eigensolution of the Jacobian matrix, and matrix inversion are the most expensive computational tasks. When considering the higher throughput characteristic of GPUs, GPUs performs better for small matrices with higher occupancy rate. CPUs gain more advantages from the higher performance of well-tuned and optimized linear algebra libraries such as OpenBLAS. Program summary: Program Title: CSPlib CPC Library link to program files: https://doi.org/10.17632/p9gb7z54sp.1 Developer's repository link: https://github.com/sandialabs/csplib Licensing provisions: BSD 2-clause Programming language: C++ Nature of problem: Dynamical systems can involve coupled processes with a wide range of time scales. The computational singular perturbation (CSP) method offers a reformulation of these systems which enables the use of dynamically-based diagnostic tools to better comprehend the dynamics by decoupling fast and slow processes. CSPlib is an open-source software library for analyzing general ordinary differential equation (ODE) and differential algebraic equation (DAE) systems, with specialized implementations for detailed chemical kinetic ODE/DAE systems. It relies on CSP for the analysis of these systems. CSPlib has been used in gas kinetic and heterogeneous catalytic kinetic models. Solution method: CSP analysis seeks a set of basis vectors to linearly decompose the right-hand side (RHS) of a dynamical system in a manner that decouples fast and slow processes. The CSP basis vectors are often well approximated with the right eigenvectors of the RHS Jacobian. And the left basis vectors are found by the inversion of the matrix, whose columns are the CSP basis vectors. Accordingly, the right and left CSP basis vectors are orthonormal. CSP defines mode amplitudes as the projections of the left basis vectors on the RHS; the time scales as the reciprocals of the RHS Jacobian eigenvalue magnitudes; and the CSP pointers, which are the element-wise multiplication of the transpose of the right CSP basis vectors with the left CSP basis vectors. For kinetic models that can be cast as the product of a generalized stoichiometric matrix and a rate of progress vector, CSP defines the participation index, which represents the contribution of a chemical reaction to each mode. Further, it defines the slow and fast importance indices, which describe the contribution of a chemical reaction to the slow and fast dynamics of a state variable, respectively. These indices are useful in diagnostic studies of dynamical systems and the construction of simplified models. Additional comments including restrictions and unusual features: CSPlib is a portable library that carries out many CSP analyses in parallel and can be used in modern high-performance platforms.
A multiple input multiple output (MIMO) power line communication (PLC) model for industrial facilities was developed that uses the physics of a bottom-up model but can be calibrated like top-down models. The PLC model considers 4-conductor cables (three-phase conductors and a ground conductor) and has several load types, including motor loads. The model is calibrated to data using mean field variational inference with a sensitivity analysis to reduce the parameter space. The results show that the inference method can accurately identify many of the model parameters, and the model is accurate even when the network is modified.
This article illustrates the use of unsupervised probabilistic learning techniques for the analysis of planetary reentry trajectories. A three-degree-of-freedom model was employed to generate optimal trajectories that comprise the training datasets. The algorithm first extracts the intrinsic structure in the data via a diffusion map approach. We find that data resides on manifolds of much lower dimensionality compared to the high-dimensional state space that describes each trajectory. Using the diffusion coordinates on the graph of training samples, the probabilistic framework subsequently augments the original data with samples that are statistically consistent with the original set. The augmented samples are then used to construct conditional statistics that are ultimately assembled in a path planning algorithm. In this framework, the controls are determined stage by stage during the flight to adapt to changing mission objectives in real-Time.
We have extended the computational singular perturbation (CSP) method to differential algebraic equation (DAE) systems and demonstrated its application in a heterogeneous-catalysis problem. The extended method obtains the CSP basis vectors for DAEs from a reduced Jacobian matrix that takes the algebraic constraints into account. We use a canonical problem in heterogeneous catalysis, the transient continuous stirred tank reactor (T-CSTR), for illustration. The T-CSTR problem is modelled fundamentally as an ordinary differential equation (ODE) system, but it can be transformed to a DAE system if one approximates typically fast surface processes using algebraic constraints for the surface species. We demonstrate the application of CSP analysis for both ODE and DAE constructions of a T-CSTR problem, illustrating the dynamical response of the system in each case. We also highlight the utility of the analysis in commenting on the quality of any particular DAE approximation built using the quasi-steady state approximation (QSSA), relative to the ODE reference case.