Publications

Results 1–25 of 136
Skip to search filters

Capturing Carbonation: Understanding Kinetic Complexities through a New Era of Electron Microscopy

Deitz, Julia D.; Dewers, Thomas D.; Heath, Jason; Polonsky, Andrew P.; Perry, Daniel L.

Cryogenic plasma focused ion beam (PFIB) electron microscopy analysis is applied to visualizing ex situ (surface industrial) and in situ (subsurface geologic) carbonation products, to advance understanding of carbonation kinetics. Ex situ carbonation is investigated using NIST fly ash standard #2689 exposed to aqueous sodium bicarbonate solutions for brief periods of time. In situ carbonation pathways are investigated using volcanic flood basalt samples from Schaef et al. (2010) exposed to aqueous CO2 solutions by them. The fly ash reaction products at room temperature show small amounts of incipient carbonation, with calcite apparently forming via surface nucleation. Reaction products at 75° C show beginning stages of an iron carbonate phase, e.g., siderite or ankerite, common phases in subsurface carbon sequestration environments. This may suggest an alternative to calcite in carbonation low calcium-bearing fly ashes. Flood basalt carbonation reactions show distinct zonation with high calcium and calcium-magnesium bearing zones alternating with high iron-bearing zones. The calcium-magnesium zones are notable with occurrence of localized pore space. Oscillatory zoning in carbonate minerals is distinctly associated with far-from-equilibrium conditions where local chemical environments fluctuate via a coupling of reaction with transport. The high porosity zones may reflect a precursor phase (e.g., aragonite) with higher molar volume that then “ripens” to the high-Mg calcite phase-plus-porosity. These observations reveal that carbonation can proceed with evolving local chemical environments, formation and disappearance of metastable phases, and evolving reactive surface areas. Together this work shows that future application of cryo-PFIB in carbonation studies would provide advanced understanding of kinetic mechanisms for optimizing industrial-scale and commercial-scale applications.

More Details

FY2022 Progress on Imbibition Testing in Containment Science

Kuhlman, Kristopher L.; Good, Forest T.; LaForce, Tara; Heath, Jason

Estimation of two-phase fluid flow properties is important to understand and predict water and gas movement through the vadose zone for agricultural, hydrogeological, and engineering applications, such as for vapor-phase contaminant transport and/or containment of noble gases in the subsurface. In this second progress report of FY22, we present two ongoing activities related to imbibition testing on volcanic rock samples. We present the development of a new analytical solution predicting the temperature response observed during imbibition into dry samples, as discussed in our previous first progress report for FY22. We also illustrate the use of a multi-modal capillary pressure distribution to simulate both early- and late-time imbibition data collected on tuff core that can exhibit multiple pore types. These FY22 imbibition tests were conducted for an extended period (i.e., far beyond the time required for the wetting front to reach the top of the sample), which is necessary for parameter estimation and characterization of two different pore types within the samples.

More Details

FY22 Progress on Multicontinuum Methods in Containment

Kuhlman, Kristopher L.; Mills, Melissa M.; Heath, Jason; Paul, Matthew J.

Estimation of two-phase fluid flow properties is important to understand and predict water and gas movement through the vadose zone for agricultural, hydrogeological, and engineering applications, such as containment transport and/or containment of gases in the subsurface. To estimate rock fluid flow properties and subsequently predict physically realistic processes such as patterns and timing of water, gas, and energy (e.g., heat) movement in the subsurface, laboratory spontaneous water imbibition with simultaneous temperature measurement and numerical modeling methods are presented in the FY22 progress report. A multiple-overlapping-continua conceptual model is used to explain and predict observed complex multi-phenomenological laboratory test behavior during spontaneous imbibition experiments. This report primarily addresses two complexities that arise during the experiments: 1) capturing the late-time behavior of spontaneous imbibition tests with dual porosity; and 2) understanding the thermal perturbation observed at or ahead of the imbibing wetting front, which are associated with adsorption of water in initially dry samples. We use numerical approaches to explore some of these issues, but also lay out a plan for further laboratory experimentation and modeling to best understand and leverage these unique observations.

More Details

Parameter estimation from spontaneous imbibition into volcanic tuff

Vadose Zone Journal

Kuhlman, Kristopher L.; Mills, Melissa M.; Heath, Jason; Paul, Matthew J.; Wilson, Jennifer E.; Bower, John E.

Two-phase fluid flow properties underlie quantitative prediction of water and gas movement, but constraining these properties typically requires multiple time-consuming laboratory methods. The estimation of two-phase flow properties (van Genuchten parameters, porosity, and intrinsic permeability) is illustrated in cores of vitric nonwelded volcanic tuff using Bayesian parameter estimation that fits numerical models to observations from spontaneous imbibition experiments. The uniqueness and correlation of the estimated parameters is explored using different modeling assumptions and subsets of the observed data. The resulting estimation process is sensitive to both moisture retention and relative permeability functions, thereby offering a comprehensive method for constraining both functions. The data collected during this relatively simple laboratory experiment, used in conjunction with a numerical model and a global optimizer, result in a viable approach for augmenting more traditional capillary pressure data obtained from hanging water column, membrane plate extractor, or mercury intrusion methods. This method may be useful when imbibition rather than drainage parameters are sought, when larger samples (e.g., including heterogeneity or fractures) need to be tested that cannot be accommodated in more traditional methods, or when in educational laboratory settings.

More Details

Multiscale assessment of caprock integrity for geologic carbon storage in the pennsylvanian farnsworth unit, Texas, USA

Energies

Trujillo, Natasha; Rose-Coss, Dylan; Heath, Jason; Dewers, Thomas D.; Ampomah, William; Mozley, Peter S.; Cather, Martha

Leakage pathways through caprock lithologies for underground storage of CO2 and/or enhanced oil recovery (EOR) include intrusion into nano-pore mudstones, flow within fractures and faults, and larger-scale sedimentary heterogeneity (e.g., stacked channel deposits). To assess multiscale sealing integrity of the caprock system that overlies the Morrow B sandstone reservoir, Farnsworth Unit (FWU), Texas, USA, we combine pore-to-core observations, laboratory testing, well logging results, and noble gas analysis. A cluster analysis combining gamma ray, compressional slowness, and other logs was combined with caliper responses and triaxial rock mechanics testing to define eleven lithologic classes across the upper Morrow shale and Thirteen Finger limestone caprock units, with estimations of dynamic elastic moduli and fracture breakdown pressures (minimum horizontal stress gradients) for each class. Mercury porosimetry determinations of CO2 column heights in sealing formations yield values exceeding reservoir height. Noble gas profiles provide a “geologic time-integrated” assessment of fluid flow across the reservoir-caprock system, with Morrow B reservoir measurements consistent with decades-long EOR water-flooding, and upper Morrow shale and lower Thirteen Finger limestone values being consistent with long-term geohydrologic isolation. Together, these data suggest an excellent sealing capacity for the FWU and provide limits for injection pressure increases accompanying carbon storage activities.

More Details

Spontaneous Imbibition Tests and Parameter Estimation in Volcanic Tuff

Kuhlman, Kristopher L.; Mills, Melissa M.; Heath, Jason; Paul, Matthew J.; Wilson, Jennifer E.; Bower, John E.

We present a dynamic laboratory spontaneous imbibition test and interpretation method, demonstrated on volcanic tuff samples from the Nevada National Security Site. The method includes numerical inverse modeling to quantify uncertainty of estimated two-phase fluid flow properties. As opposed to other approaches requiring multiple different laboratory instruments, the dynamic imbibition method simultaneously estimates capillary pressure and relative permeability from one test apparatus.

More Details

Multicontinuum Flow Models for Assessing Two-Phase Flow in Containment Science

Kuhlman, Kristopher L.; Heath, Jason

We present a new pre-processor tool written in Python that creates multicontinuum meshes for PFLOTRAN to simulate two-phase flow and transport in both the fracture and matrix continua. We discuss the multicontinuum modeling approach to simulate potentially mobile water and gas in the fractured volcanic tuffs at Aqueduct Mesa, at the Nevada National Security Site.

More Details

Heterogeneous multiphase flow properties of volcanic rocks and implications for noble gas transport from underground nuclear explosions

Vadose Zone Journal

Heath, Jason; Kuhlman, Kristopher L.; Broome, Scott T.; Wilson, Jennifer E.; Malama, Bwalya

Of interest to the Underground Nuclear Explosion Signatures Experiment are patterns and timing of explosion-generated noble gases that reach the land surface. The impact of potentially simultaneous flow of water and gas on noble gas transport in heterogeneous fractured rock is a current scientific knowledge gap. This article presents field and laboratory data to constrain and justify a triple continua conceptual model with multimodal multiphase fluid flow constitutive equations that represents host rock matrix, natural fractures, and induced fractures from past underground nuclear explosions (UNEs) at Aqueduct and Pahute Mesas, Nevada National Security Site, Nevada, USA. Capillary pressure from mercury intrusion and direct air–water measurements on volcanic tuff core samples exhibit extreme spatial heterogeneity (i.e., variation over multiple orders of magnitude). Petrographic observations indicate that heterogeneity derives from multimodal pore structures in ash-flow tuff components and post-depositional alteration processes. Comparisons of pre- and post-UNE samples reveal different pore size distributions that are due in part to microfractures. Capillary pressure relationships require a multimodal van Genuchten (VG) constitutive model to best fit the data. Relative permeability estimations based on unimodal VG fits to capillary pressure can be different from those based on bimodal VG fits, implying the choice of unimodal vs. bimodal fits may greatly affect flow and transport predictions of noble gas signatures. The range in measured capillary pressure and predicted relative permeability curves for a given lithology and between lithologies highlights the need for future modeling to consider spatially distributed properties.

More Details

First-Round Testing of the Brine Availability Test in Salt (BATS) at the Waste Isolation Pilot Plant (WIPP)

Kuhlman, Kristopher L.; Mills, Melissa M.; Jayne, Richard S.; Herrick, Courtney G.; Choens, Robert C.; Nemer, Martin N.; Heath, Jason; Matteo, Edward N.; Xiong, Yongliang X.; Otto, Shawn O.; Dozier, Brian D.; Weaver, Doug W.; Stauffer, Phil S.; Guiltinan, Eric J.; Boukhalfa, Hakim B.; Rahn, Thom R.; Wu, Yuxin W.; Rutqvist, Jonny R.; Hu, Mengsu H.; Crandall, Dustin C.

Abstract not provided.

An Experimental Method to Measure Gaseous Diffusivity in Tight and Partially Saturated Porous Media via Continuously Monitored Mass Spectrometry

Transport in Porous Media

Paul, Matthew J.; Broome, Scott T.; Kuhlman, Kristopher L.; Feldman, Joshua D.; Heath, Jason

Detection of radioxenon and radioargon produced by underground nuclear explosions is one of the primary methods by which the Comprehensive Nuclear-Test–Ban Treaty (CTBT) monitors for nuclear activities. However, transport of these noble gases to the surface via barometric pumping is a complex process relying on advective and diffusive processes in a fractured porous medium to bring detectable levels to the surface. To better understand this process, experimental measurements of noble gas and chemical surrogate diffusivity in relevant lithologies are necessary. However, measurement of noble gas diffusivity in tight or partially saturated porous media is challenging due to the transparent nature of noble gases, the lengthy diffusion times, and difficulty maintaining consistent water saturation. Here, the quasi-steady-state Ney–Armistead method is modified to accommodate continuous gas sampling via effusive flow to a mass spectrometer. An analytical solution accounting for the cumulative sampling losses and induced advective flow is then derived. Experimental results appear in good agreement with the proposed theory, suggesting the presence of retained groundwater reduces the effective diffusivity of the gas tracers by 10–1000 times. Furthermore, by using a mass spectrometer, the method described herein is applicable to a broad range of gas species and porous media.

More Details
Results 1–25 of 136
Results 1–25 of 136