Publications

3 Results

Search results

Jump to search filters

Encapsulated Transition Metal Catalysts Enable Long-term Stability in Frontal Polymerization Resins

Macromolecules

Leguizamon, Samuel C.; Davydovich, Oleg; Greenlee, Andrew J.; Jones, Brad H.; Appelhans, Leah A.; Warner, Matthew J.; Kent, Michael S.; Gallegos, Shantae C.; Jansen, Annika L.; Roach, Devin J.; Root, Harrison; Cardenas, Jorge A.

Frontal polymerization involves the propagation of a thermally driven polymerization wave through a monomer solution to rapidly generate high-performance polymeric materials with little energy input. The balance between latent catalyst activation and sufficient reactivity to sustain a front can be difficult to achieve and often results in systems with poor storage lives. This is of particular concern for frontal ring-opening metathesis polymerization (FROMP) where gelation occurs within a single day of resin preparation due to the highly reactive nature of Grubbs-type catalysts. In this report we demonstrate the use of encapsulated catalysts to provide remarkable latency to frontal polymerization systems, specifically using the highly active dicyclopentadiene monomer system. Negligible differences were observed in the frontal velocities or thermomechanical properties of the resulting polymeric materials. FROMP systems with encapsulated catalyst particles are shown with storage lives exceeding 12 months and front rates that increase over a well-characterized 2 month period. Moreover, the modularity of this encapsulation method is demonstrated by encapsulating a platinum catalyst for the frontal polymerization of silicones by using hydrosilylation chemistry.

More Details

Anti-Icing Coatings using Ionomer Film Layer Structuring

Bell, Nelson S.; Narcross, Hannah N.; Bowman, Ashley; Jansen, Annika L.; Grest, Gary S.; Thurston, Bryce A.

This research effort examined the application of Nafion polymers in alcohol solvents as an anti-ice surface coating, as a mixture with hydrophilic polymers and freezing point depressant salt systems. Co-soluble systems of Nafion, polymer and salt were applied using dip coating methods to create smooth films for frost observation over a Peltier plate thermal system in ambient laboratory conditions. Cryo-DSC was applied to examine freezing events of the Nafion-surfactant mixtures, but the sensitivity of the measurement was insufficient to determine frost behavior. Collaborations with the Fog Chamber at Sandia-Albuquerque, and in environmental SAXS measurements with CINT-LANL were requested but were not able to be performed under the research duration. Since experimental characterization of these factors is difficult to achieve directly, computational modeling was used to guide the scientific basis for property improvement. Computational modeling was performed to improve understanding of the dynamic association between ionomer side groups and added molecules and deicing salts. The polyacrylic acid in water system was identified at the start of the project as a relevant system for exploring the effect of varying counterions on the properties of fully deprotonated polyacrylic acid (PAA) in the presence of water. Simulations were modeled with four different counterions, two monovalent counterions (K+ and Na+) and two divalent counterions (Ca2+ and Mg2+). The wt% of PAA in these systems was varied from ~10 to 80 wt% PAA for temperatures from 250K to 400K. In the second set of simulations, the interpenetration of water into a dry PAA film was studied for Na+ or Ca2+ counterions for temperatures between 300K and 400K. The result of this project is a sprayable Nafion film composite which resists ice nucleation at -20 °C for periods of greater than three hours. It is composed of Nafion polymer, hydrophilic polyethylene oxide polymer and CaCl2 anti-ice crosslinker. Durability and field performance properties remain to be determined.

More Details
3 Results
3 Results