Publications

Results 1–25 of 126

Search results

Jump to search filters

Insights into Constraining Rate Coefficients in Fuel Oxidation Mechanisms Using Genetic Algorithm Optimization

Energy and Fuels

Demireva, Maria; Sheps, Leonid S.; Hansen, Nils H.

Accurate fuel oxidation mechanisms can enable predictive capabilities that aid in advancing combustion technologies. High-level computational kinetics can yield reasonable rate coefficients with uncertainties, in some cases, below a factor of 2. Computed rate coefficients can be constrained further by optimizing against experimental data. Here, we explore the application of genetic algorithm (GA) optimization to constrain computed rate coefficients in complex fuel oxidation mechanisms in conjunction with temperature-dependent species mole fractions from jet-stirred reactor (JSR) measurements. Cyclohexane is a model candidate for understanding the reactivity of cyclic fuels. In this work, we optimize the rate coefficients of the most recent literature cyclohexane mechanism, which incorporates theoretically computed rate coefficients for the reaction networks stemming from the first and second O2 addition pathways, against the experimental results of two separate literature JSR studies. Optimization consistency is evaluated by carrying out three GA optimizations: fitting to the temperature-dependent species mole fractions in each JSR experiment separately and simultaneously fitting the species mole fractions in both experiments. Local sensitivity analyses are used to identify five influential low-temperature oxidation reactions for optimization. Although the three optimizations do not yield identical rate coefficients, the direction of change in all five rate coefficients is consistent among the three optimizations. Performance of the models from the three optimizations is assessed against literature ignition delay times with differences in the level of agreement observed among the different optimizations. Comparisons are made with our recent optimization work of a cyclopentane oxidation master-equation model against time-resolved species concentrations, and insights and improvements of the strategy for constraining rate coefficients using GA optimization are discussed.

More Details

The role of radical-radical chain-propagating pathways in the phenyl + propargyl reaction

Proceedings of the Combustion Institute

Couch, David E.; Kukkadapu, Goutham; Zhang, Angie J.; Jasper, Ahren W.; Taatjes, Craig A.; Hansen, Nils H.

Well-skipping radical-radical reactions can provide a chain-propagating pathway for formation of polycyclic radicals implicated in soot inception. Here we use controlled pyrolysis in a microreactor to isolate and examine the role of well-skipping channels in the phenyl (C6H5) + propargyl (C3H3) radical-radical reaction at temperatures of 800–1600 K and pressures near 25 Torr. The temperature and concentration dependence of the closed-shell (C9H8) and radical (C9H7) products are observed using electron-ionization mass spectrometry. The flow in the reactor is simulated using a boundary layer model employing a chemical mechanism based on recent rate coefficient calculations. Comparison between simulation and experiment shows reasonable agreement, within a factor of 3, while suggesting possible improvements to the model. In contrast, eliminating the well-skipping reactions from the chemistry mechanism causes a much larger discrepancy between simulation and experiment in the temperature dependence of the radical concentration, revealing that the well-skipping pathways, especially to form indenyl radical, are significant at temperatures of 1200 K and higher. While most C9H7 forms by well-skipping at 25 Torr, an additional simulation indicates that the well-skipping channels only contribute around 3% of the C9Hx yield at atmospheric pressure, thus indicating a negligible role of the well-skipping pathways at atmospheric and higher pressures.

More Details

Prospects and Limitations of Predicting Fuel Ignition Properties from Low-Temperature Speciation Data

Energy and Fuels

Buras, Zachary; Hansen, Nils H.; Taatjes, Craig A.; Sheps, Leonid S.

Using chemical kinetic modeling and statistical analysis, we investigate the possibility of correlating key chemical "markers"-typically small molecules-formed during very lean (φ ∼0.001) oxidation experiments with near-stoichiometric (φ ∼1) fuel ignition properties. One goal of this work is to evaluate the feasibility of designing a fuel-screening platform, based on small laboratory reactors that operate at low temperatures and use minimal fuel volume. Buras et al. [Combust. Flame 2020, 216, 472-484] have shown that convolutional neural net (CNN) fitting can be used to correlate first-stage ignition delay times (IDTs) with OH/HO2measurements during very lean oxidation in low-T flow reactors with better than factor-of-2 accuracy. In this work, we test the limits of applying this correlation-based approach to predict the low-temperature heat release (LTHR) and total IDT, including the sensitivity of total IDT to the equivalence ratio, φ. We demonstrate that first-stage IDT can be reliably correlated with very lean oxidation measurements using compressed sensing (CS), which is simpler to implement than CNN fitting. LTHR can also be predicted via CS analysis, although the correlation quality is somewhat lower than for first-stage IDT. In contrast, the accuracy of total IDT prediction at φ = 1 is significantly lower (within a factor of 4 or worse). These results can be rationalized by the fact that the first-stage IDT and LTHR are primarily determined by low-temperature chemistry, whereas total IDT depends on low-, intermediate-, and high-temperature chemistry. Oxidation reactions are most important at low temperatures, and therefore, measurements of universal molecular markers of oxidation do not capture the full chemical complexity required to accurately predict the total IDT even at a single equivalence ratio. As a result, we find that φ-sensitivity of ignition delay cannot be predicted at all using solely correlation with lean low-T chemical speciation measurements.

More Details

Experimental Observation of Hydrocarbon Growth by Resonance-Stabilized Radical–Radical Chain Reaction

Angewandte Chemie - International Edition

Couch, David E.; Zhang, Angie J.; Taatjes, Craig A.; Hansen, Nils H.

Rapid molecular-weight growth of hydrocarbons occurs in flames, in industrial synthesis, and potentially in cold astrochemical environments. A variety of high- and low-temperature chemical mechanisms have been proposed and confirmed, but more facile pathways may be needed to explain observations. We provide laboratory confirmation in a controlled pyrolysis environment of a recently proposed mechanism, radical–radical chain reactions of resonance-stabilized species. The recombination reaction of phenyl (c-C6H5) and benzyl (c-C6H5CH2) radicals produces both diphenylmethane and diphenylmethyl radicals, the concentration of the latter increasing with rising temperature. A second phenyl addition to the product radical forms both triphenylmethane and triphenylmethyl radicals, confirming the propagation of radical–radical chain reactions under the experimental conditions of high temperature (1100–1600 K) and low pressure (ca. 3 kPa). Similar chain reactions may contribute to particle growth in flames, the interstellar medium, and industrial reactors.

More Details

Chemical insights into the multi-regime low-temperature oxidation of di-n-propyl ether: Jet-stirred reactor experiments and kinetic modeling

Combustion and Flame

Hansen, Nils H.; Fan, Xuefeng; Sun, Wenyu; Gao, Yi; Chen, Bingjie; Pitsch, Heinz; Bin YangBin

To further understand the combustion characteristics and the reaction pathways of acyclic ethers, the oxidation of di-n-propyl ether (DPE) was investigated in a jet-stirred reactor (JSR) combined with a photoionization molecular-beam mass spectrometer. The experiments were carried out at near-atmospheric pressure (700 Torr) and over a temperature range of 425–850 K. Based on the experimental data and previous studies on ether oxidation, a new kinetic model was constructed and used to interpret the oxidation chemistry of DPE. In DPE oxidation, a high reactivity at low temperatures and two negative temperature coefficient (NTC) zones were observed. These behaviors are explained in this work by taking advantage of the obtained species information and the modeling analyses: the two NTC zones are caused by the competition of chain branching and termination reactions of the fuel itself and specific oxidation intermediates, respectively. Furthermore, the general requirements to have double-NTC behavior are discussed. A variety of crucial fuel-specific C6 species, such as ketohydroperoxides and diones, were detected in the species pool of DPE oxidation. Their formation pathways are illuminated based on rate-of-production (ROP) analyses. Propanal was identified as the most abundant small molecule intermediate, and its related reactions have an important impact on the oxidation process of DPE. Both acetic acid and propionic acid were detected in high concentrations. A new formation pathway of propionic acid is proposed and incorporated into the kinetic model to achieve a more accurate prediction for propionic acid mole fractions.

More Details

A New Approach to Fundamental Mechanism Discovery in Polymer Upcycling

Sheps, Leonid S.; Osborn, David L.; Hansen, Nils H.

We present a new experimental methodology for detailed experimental investigations of depolymerization reactions over solid catalysts. This project aims to address a critical need in fundamental research on chemical upcycling of polymers – the lack of rapid, sensitive, isomerselective probing techniques for the detection of reaction intermediates and products. Our method combines a heterogeneous catalysis reactor for the study of multiphase (gas/polymer melt/solid) systems, coupled to a vacuum UV photoionization time-of-flight mass spectrometer. This apparatus draws on our expertise in probing complex gas-phase chemistry and enables highthroughput, detailed chemical speciation measurements of the gas phase above the catalyst, providing valuable information on the heterogeneous catalytic reactions. Using this approach, we investigated the depolymerization of high-density polyethylene (HDPE) over Ir-doped zeolite catalysts. We showed that the product distribution was dominated by low-molecular weight alkenes with terminal C=C double bonds and revealed the presence of many methyl-substituted alkenes and alkanes, suggesting extensive methyl radical chemistry. In addition, we investigated the fundamental reactivity of model oligomer molecules n-butane and isobutane over ZSM-5 zeolites. We demonstrated the first direct detection of methyl radical intermediates, confirming the key role of methyl in zeolite-catalyzed activation of alkanes. Our results show the potential of this experimental method to achieve deep insight into the complex depolymerization reactions and pave the way for detailed mechanistic studies, leading to increased fundamental understanding of key processes in chemical upcycling of polymers.

More Details
Results 1–25 of 126
Results 1–25 of 126