Publications

Results 1–25 of 140

Search results

Jump to search filters

Will Stochastic Devices Play Nice With Others in Neuromorphic Hardware?: There’s More to a Probabilistic System Than Noisy Devices

IEEE Electron Devices Magazine

Aimone, James B.; Misra, Shashank M.

Achieving brain-like efficiency in computing requires a co-design between the development of neural algorithms, brain-inspired circuit design, and careful consideration of how to use emerging devices. The recognition that leveraging device-level noise as a source of controlled stochasticity represents an exciting prospect of achieving brain-like capabilities in probabilistic neural algorithms, but the reality of integrating stochastic devices with deterministic devices in an already-challenging neuromorphic circuit design process is formidable. Here, we explore how the brain combines different signaling modalities into its neural circuits as well as consider the implications of more tightly integrated stochastic, analog, and digital circuits. Further, by acknowledging that a fully CMOS implementation is the appropriate baseline, we conclude that if mixing modalities is going to be successful for neuromorphic computing, it will be critical that device choices consider strengths and limitations at the overall circuit level.

More Details

Suppression of Midinfrared Plasma Resonance Due to Quantum Confinement in δ -Doped Silicon

Physical Review Applied

Young, Steve M.; Katzenmeyer, Aaron M.; Anderson, Evan M.; Luk, Ting S.; Ivie, Jeffrey A.; Schmucker, Scott W.; Gao, Xujiao G.; Misra, Shashank M.

The classical Drude model provides an accurate description of the plasma resonance of three-dimensional materials, but only partially explains two-dimensional systems where quantum mechanical effects dominate such as P:δ layers - atomically thin sheets of phosphorus dopants in silicon that induce electronic properties beyond traditional doping. Previously it was shown that P:δ layers produce a distinct Drude tail feature in ellipsometry measurements. However, the ellipsometric spectra could not be properly fit by modeling the δ layer as a discrete layer of classical Drude metal. In particular, even for large broadening corresponding to extremely short relaxation times, a plasma resonance feature was anticipated but not evident in the experimental data. In this work, we develop a physically accurate description of this system, which reveals a general approach to designing thin films with intentionally suppressed plasma resonances. Our model takes into account the strong charge-density confinement and resulting quantum mechanical description of a P:δ layer. We show that the absence of a plasma resonance feature results from a combination of two factors: (i) the sharply varying charge-density profile due to strong confinement in the direction of growth; and (ii) the effective mass and relaxation time anisotropy due to valley degeneracy. The plasma resonance reappears when the atoms composing the δ layer are allowed to diffuse out from the plane of the layer, destroying its well-confined two-dimensional character that is critical to its distinctive electronic properties.

More Details

Electronic structure of boron and aluminum δ-doped layers in silicon

Journal of Applied Physics

Campbell, Quinn C.; Misra, Shashank M.; Baczewski, Andrew D.

Recent work on atomic-precision dopant incorporation technologies has led to the creation of both boron and aluminum δ -doped layers in silicon with densities above the solid solubility limit. We use density functional theory to predict the band structure and effective mass values of such δ layers, first modeling them as ordered supercells. Structural relaxation is found to have a significant impact on the impurity band energies and effective masses of the boron layers, but not the aluminum layers. However, disorder in the δ layers is found to lead to a significant flattening of the bands in both cases. We calculate the local density of states and doping potential for these δ -doped layers, demonstrating that their influence is highly localized with spatial extents at most 4 nm. We conclude that acceptor δ -doped layers exhibit different electronic structure features dependent on both the dopant atom and spatial ordering. This suggests prospects for controlling the electronic properties of these layers if the local details of the incorporation chemistry can be fine-tuned.

More Details

Quantifying the Variation in the Number of Donors in Quantum Dots Created Using Atomic Precision Advanced Manufacturing

Journal of Physical Chemistry C

Campbell, Quinn C.; Koepke, Justin K.; Ivie, Jeffrey A.; Mounce, Andrew M.; Ward, Daniel R.; Carroll, Malcolm S.; Misra, Shashank M.; Baczewski, Andrew D.; Bussmann, Ezra B.

Atomic-precision advanced manufacturing enables unique silicon quantum electronics built on quantum dots fabricated from small numbers of phosphorus dopants. The number of dopant atoms comprising a dot plays a central role in determining the behavior of charge and spin confined to the dots and thus overall device performance. In this work, we use both theoretical and experimental techniques to explore the combined impact of lithographic variation and stochastic kinetics on the number of P incorporations in quantum dots made using these techniques and how this variation changes as a function of the size of the dot. Using a kinetic model of PH3 dissociation augmented with novel reaction barriers, we demonstrate that for a 2 × 3 silicon dimer window the probability that no donor incorporates goes to zero, allowing for certainty in the placement of at least one donor. However, this still comes with some uncertainty in the precise number of incorporated donors (either one or two), and this variability may still impact certain applications. We also examine the impact of the size of the initial lithographic window, finding that the incorporation fraction saturates to δ-layer-like coverage as the circumference-to-area ratio decreases. We predict that this incorporation fraction depends strongly on the dosage of the precursor and that the standard deviation of the number of incorporations scales as ∼√n, as would be expected for a sequence of largely independent incorporation events. Finally, we characterize an array of 36 experimentally prepared multidonor 3 × 3 nm lithographic windows with scanning tunneling microscopy, measuring the fidelity of the lithography to the desired array and the final location of PHx fragments within these lithographic windows. We use our kinetic model to examine the expected variability due to the observed lithographic error, predicting a negligible impact on incorporation statistics. We find good agreement between our model and the inferred incorporation locations in these windows from scanning tunneling microscope measurements.

More Details

Electric current paths in a Si:P delta-doped device imaged by nitrogen-vacancy diamond magnetic microscopy

Nanotechnology

Basso, Luca B.; Kehayias, Pauli M.; Henshaw, Jacob D.; Saleh Ziabari, Maziar; Byeon, Heejun; Lilly, Michael L.; Bussmann, Ezra B.; Campbell, DeAnna M.; Misra, Shashank M.; Mounce, Andrew M.

The recently-developed ability to control phosphorous-doping of silicon at an atomic level using scanning tunneling microscopy, a technique known as atomic precision advanced manufacturing (APAM), has allowed us to tailor electronic devices with atomic precision, and thus has emerged as a way to explore new possibilities in Si electronics. In these applications, critical questions include where current flow is actually occurring in or near APAM structures as well as whether leakage currents are present. In general, detection and mapping of current flow in APAM structures are valuable diagnostic tools to obtain reliable devices in digital-enhanced applications. In this paper, we used nitrogen-vacancy (NV) centers in diamond for wide-field magnetic imaging (with a few-mm field of view and micron-scale resolution) of magnetic fields from surface currents flowing in an APAM test device made of a P delta-doped layer on a Si substrate, a standard APAM witness material. We integrated a diamond having a surface NV ensemble with the device (patterned in two parallel mm-sized ribbons), then mapped the magnetic field from the DC current injected in the APAM device in a home-built NV wide-field microscope. The 2D magnetic field maps were used to reconstruct the surface current densities, allowing us to obtain information on current paths, device failures such as choke points where current flow is impeded, and current leakages outside the APAM-defined P-doped regions. Analysis on the current density reconstructed map showed a projected sensitivity of ∼0.03 A m−1, corresponding to a smallest-detectable current in the 200 μm wide APAM ribbon of ∼6 μA. These results demonstrate the failure analysis capability of NV wide-field magnetometry for APAM materials, opening the possibility to investigate other cutting-edge microelectronic devices.

More Details

Hole in one: Pathways to deterministic single-acceptor incorporation in Si(100)-2 × 1

AVS Quantum Science

Campbell, Quinn C.; Baczewski, Andrew D.; Butera, R.E.; Misra, Shashank M.

Stochastic incorporation kinetics can be a limiting factor in the scalability of semiconductor fabrication technologies using atomic-precision techniques. While these technologies have recently been extended from donors to acceptors, the extent to which kinetics will impact single-acceptor incorporation has yet to be assessed. To identify the precursor molecule and dosing conditions that are promising for deterministic incorporation, we develop and apply an atomistic model for the single-acceptor incorporation rates of several recently demonstrated molecules: diborane (B2H6), boron trichloride (BCl3), and aluminum trichloride in both monomer (AlCl3) and dimer forms (Al2Cl6). While all three precursors can realize single-acceptor incorporation, we predict that diborane is unlikely to realize deterministic incorporation, boron trichloride can realize deterministic incorporation with modest heating (50 °C), and aluminum trichloride can realize deterministic incorporation at room temperature. We conclude that both boron and aluminum trichloride are promising precursors for atomic-precision single-acceptor applications, with the potential to enable the reliable production of large arrays of single-atom quantum devices.

More Details

Probabilistic Neural Circuits leveraging AI-Enhanced Codesign for Random Number Generation

Proceedings - 2022 IEEE International Conference on Rebooting Computing, ICRC 2022

Cardwell, Suma G.; Schuman, Catherine D.; Smith, John D.; Patel, Karan; Kwon, Jaesuk; Liu, Samuel; Allemang, Christopher R.; Misra, Shashank M.; Incorvia, Jean A.; Aimone, James B.

Stochasticity is ubiquitous in the world around us. However, our predominant computing paradigm is deterministic. Random number generation (RNG) can be a computationally inefficient operation in this system especially for larger workloads. Our work leverages the underlying physics of emerging devices to develop probabilistic neural circuits for RNGs from a given distribution. However, codesign for novel circuits and systems that leverage inherent device stochasticity is a hard problem. This is mostly due to the large design space and complexity of doing so. It requires concurrent input from multiple areas in the design stack from algorithms, architectures, circuits, to devices. In this paper, we present examples of optimal circuits developed leveraging AI-enhanced codesign techniques using constraints from emerging devices and algorithms. Our AI-enhanced codesign approach accelerated design and enabled interactions between experts from different areas of the micro-electronics design stack including theory, algorithms, circuits, and devices. We demonstrate optimal probabilistic neural circuits using magnetic tunnel junction and tunnel diode devices that generate an RNG from a given distribution.

More Details

Al-alkyls as acceptor dopant precursors for atomic-scale devices

Journal of Physics Condensed Matter

Owen, J.H.G.; Campbell, Quinn C.; Santini, R.; Ivie, Jeffrey A.; Baczewski, Andrew D.; Schmucker, Scott W.; Bussmann, Ezra B.; Misra, Shashank M.; Randall, J.N.

Atomically precise ultradoping of silicon is possible with atomic resists, area-selective surface chemistry, and a limited set of hydride and halide precursor molecules, in a process known as atomic precision advanced manufacturing (APAM). It is desirable to expand this set of precursors to include dopants with organic functional groups and here we consider aluminium alkyls, to expand the applicability of APAM. We explore the impurity content and selectivity that results from using trimethyl aluminium and triethyl aluminium precursors on Si(001) to ultradope with aluminium through a hydrogen mask. Comparison of the methylated and ethylated precursors helps us understand the impact of hydrocarbon ligand selection on incorporation surface chemistry. Combining scanning tunneling microscopy and density functional theory calculations, we assess the limitations of both classes of precursor and extract general principles relevant to each.

More Details
Results 1–25 of 140
Results 1–25 of 140