Experimental studies and ab initio quantum chemistry calculations were combined to investigate the process by which a Fenton reaction breaks down polystyrene sulfonate. The experimental results show that both molecular weight reduction and loss of aromaticity occur nearly simultaneously, a finding that is supported by the calculations. The results show that more than half of the material is broken down to low molecular weight compounds (< 500 g/mol) with two molar equivalents of H2O2 per styrene monomer. The calculations provide insights into the reaction pathways and indicate that at least two hydroxyl radicals are required to cleave backbone C–C bonds or to eliminate aromaticity. The calculations also show that, of the aromatic carbons, hydroxyl radical is most likely to add to the carbon bonded to sulfur. This finding explains the loss of hydrogen sulfite anion early in the process and also the efficient reduction of Fe(III) to Fe(II) through semiquinone formation. Taken together the experimental and computational results indicate that the reaction is very efficient and that very little H2O2 is lost to unproductive reactions. This high efficiency is attributed to the close association of Fe atoms with the sulfonate group such that hydroxyl radicals are generated near the polymer chains.
The plant polymer lignin is the most abundant renewable source of aromatics on the planet and conversion of it to valuable fuels and chemicals is critical to the economic viability of a lignocellulosic biofuels industry and to meeting the DOE’s 2022 goal of $\$2.50$/gallon mean biofuel selling price. Presently, there is no efficient way of converting lignin into valuable commodities. Current biological approaches require mixtures of expensive ligninolytic enzymes and engineered microbes. This project was aimed at circumventing these problems by discovering commensal relationships among fungi and bacteria involved in biological lignin utilization and using this knowledge to engineer microbial communities capable of converting lignin into renewable fuels and chemicals. Essentially, we aimed to learn from, mimic and improve on nature. We discovered fungi that synergistically work together to degrade lignin, engineered fungal systems to increase expression of the required enzymes and engineered organisms to produce products such as biodegradable plastics precursors.
The generating value from lignin through depolymerization and biological conversion to valuable fuels, chemicals, or intermediates has great promise but is limited by several factors including lack of cost-effective depolymerization methods, toxicity within the breakdown products, and low bioconversion of the breakdown products. High yield depolymerization of natural lignins requires cleaving carbon-carbon bonds in addition to ether bonds. To address that need, we report that a chelator-mediated Fenton reaction can efficiently cleave C-C bonds in sulfonated polymers at or near room temperature, and that unwanted repolymerization can be minimized through optimizing reaction conditions. This method was used to depolymerize lignosulfonate from Mw = 28,000 g/mol to Mw = 800 g/mol. The breakdown products were characterized by SEC, FTIR and NMR and evaluated for bioavailability. The breakdown products are rich in acid, aldehyde, and alcohol functionalities but are largely devoid of aromatics and aliphatic dienes. A panel of nine organisms were tested for the ability to grow on the breakdown products. Growth at a low level was observed for several monocultures on the depolymerized LS in absence of glucose. Much stronger growth was observed in the presence of 0.2% glucose and for one organism we demonstrate doubling of melanin production in the presence of depolymerized LS. The results suggest that this chelator-mediated Fenton method is a promising new approach for biological conversion of lignin into higher value chemicals or intermediates.
Hydroxycinnamic acids such as p-coumaric acid (CA) are chemically linked to lignin in grassy biomass with fairly labile ester bonds and therefore represent a straightforward opportunity to extract and valorize lignin components. In this work, we investigated the enzymatic conversion of CA extracted from lignocellulose to 4-vinylphenol (4VP) by expressing a microbial phenolic acid decarboxylase in Corynebacterium glutamicum, Escherichia coli, and Bacillus subtilis. The performance of the recombinant strains was evaluated in response to the substrate concentration in rich medium or a lignin liquor and the addition of an organic overlay to perform a continuous product extraction in batch cultures. We found that using undecanol as an overlay enhanced the 4VP titers under high substrate concentrations, while extracting > 97% of the product from the aqueous phase. C. glutamicum showed the highest tolerance to CA and resulted in the accumulation of up to 187 g/L of 4VP from pure CA in the overlay with a 90% yield when using rich media, or 17 g/L of 4VP with a 73% yield from CA extracted from lignin. These results indicate that C. glutamicum is a suitable host for the high-level production of 4VP and that further bioprocess engineering strategies should be explored to optimize the production, extraction, and purification of 4VP from lignin with this organism.