Publications

Results 1–25 of 40

Search results

Jump to search filters

Oxygen vacancy migration and impact on high voltage DC polarization in 0.8BaTiO3–0.2BiZn0.5Ti0.5O3

Journal of the American Ceramic Society

Bishop, Sean R.; Blea, Mia A.; Peretti, Amanda S.; Foulk, James W.; Jauregui, Luis; Lowry, Daniel R.; Boro, Joseph; Coker, Eric N.; Bock, Jonathan A.

Electrical polarization and defect transport are examined in 0.8BaTiO3–0.2BiZn0.5Ti0.5O3, an attractive capacitor material for high power electronics. Oxygen vacancies are suggested to be the majority charge carrier at or below 250°C with a grain conduction hopping activation energy of 0.97 eV and 0.92 eV for thermally stimulated depolarization current (TSDC) and impedance spectroscopy measurements, respectively. At higher temperature, thermally generated electronic conduction with an activation energy of 1.6 eV is dominant. Significant oxygen vacancy concentration is indicated (up to ~1%) due to cation vacancy formation (i.e., acceptor defects) from observed Bi (and likely Zn) volatility. Oxygen vacancy diffusivity is estimated to be 10-12.8 cm2/s at 250°C. Low diffusivity and high activation energies are indicative of significant defect interactions. Dipolar oxygen vacancy defects are also indicated, with an activation energy of 0.59 eV from TSDC measurements. In conclusion, the large oxygen vacancy content leads to a short lifetime during high voltage (30 kV/cm), high temperature (250°C) direct current (DC) electrical measurements.

More Details

Manganese-based A-site high-entropy perovskite oxide for solar thermochemical hydrogen production

Journal of Materials Chemistry A

Bishop, Sean R.; Liu, Cijie; Liu, Xingbo; King, Keith A.; Sugar, Joshua D.; Mcdaniel, Anthony H.; Salinas, Perla A.; Coker, Eric N.; Foulk, James W.; Luo, Jian

Non-stoichiometric perovskite oxides have been studied as a new family of redox oxides for solar thermochemical hydrogen (STCH) production owing to their favourable thermodynamic properties. However, conventional perovskite oxides suffer from limited phase stability and kinetic properties, and poor cyclability. Here, we report a strategy of introducing A-site multi-principal-component mixing to develop a high-entropy perovskite oxide, (La1/6Pr1/6Nd1/6Gd1/6Sr1/6Ba1/6)MnO3 (LPNGSB_Mn), which shows desirable thermodynamic and kinetics properties as well as excellent phase stability and cycling durability. LPNGSB_Mn exhibits enhanced hydrogen production (?77.5 mmol moloxide?1) compared to (La2/3Sr1/3)MnO3 (?53.5 mmol moloxide?1) in a short 1 hour redox duration and high STCH and phase stability for 50 cycles. LPNGSB_Mn possesses a moderate enthalpy of reduction (252.51-296.32 kJ (mol O)?1), a high entropy of reduction (126.95-168.85 J (mol O)?1 K?1), and fast surface oxygen exchange kinetics. All A-site cations do not show observable valence changes during the reduction and oxidation processes. This research preliminarily explores the use of one A-site high-entropy perovskite oxide for STCH.

More Details

Exploitation of Defects in High Entropy Ceramic Barrier Materials

Harvey, Jacob A.; Lowry, Daniel R.; Riley, Christopher R.; Mccoy, Chad A.; Ulmen, Ben; Biedermann, Laura B.; Bishop, Sean R.; Gallis, Dorina F.S.

A critical mission need exists to develop new materials that can withstand extreme environments and multiple sequential threats. High entropy materials, those containing 5 or more metals, exhibit many exciting properties which would potentially be useful in such situations. However, a particularly hard challenge in developing new high entropy materials is determining a priori which compositions will form the desired single phase material. The project outlined here combined several modeling and experimental techniques to explore several structure-property-relationships of high entropy ceramics in an effort to better understand the connection between their compositional components, their observed properties, and stability. We have developed novel machine learning algorithms which rapidly predict stable high entropy ceramic compositions, identified the stability interplay between configurational entropy and cation defects, and tested the mechanical stability of high entropy oxides using the unique capabilities at the Dynamic Compression Sector facility and the Saturn accelerator.

More Details

Site Disorder as a Predictor for Compositionally Complex 5RE2Zr2O7 Ceramic Phase Stability

Journal of the American Ceramic Society

Lowry, Daniel R.; Boro, Joseph R.; Foulk, James W.; Valdez, Nichole R.; Bishop, Sean R.

Here, phase formation and stability of five component compositionally complex rare earth zirconates (5RE2Zr2O7) were investigated by X-ray diffraction and electron microprobe analysis. Zirconates with different rare earth compositions (LaNdSmEuDy, LaNdSmEuYb, LaNdEuErYb, LaNdDyErYb, SmEuDyYHo, LaYHoErYb, and DyYHoErYb) were synthesized at 1700°C and 2000°C by the solid-state method to investigate the effect of A-site site disorder (δA) on phase stability. Increased site disorder results from mixed cation occupancy with localized crystallographic strain and bond disorder. Compositions LaNdSmEuDy (δA = 4.6) and LaNdSmEuYb (δA = 6.0) produced a single pyrochlore phase and compositions SmDyYHoErYb (δA = 2.8), LaYHoErYb (δA = 6.2), and DyYHoErYb (δA = 1.7) produced a single fluorite phase. High δA compositions LaNdEuErYb (δA = 6.9) and LaNdDyErYb (δA = 7.2) produced a pyrochlore and fluorite phase mixture at 1700°C. Single phase was obtained for the latter composition at 2000°C. Of the single phase compositions calcined at 1700°C, LaNdSmEuYb and LaYHoErYb (both with largest δA) showed decomposition to mixed fluorite and pyrochlore phases during lower temperature anneals, indicating entropic stabilization. Comparison with prior work shows a temperature dependence of the critical δA for phase stability, and compositions near it are expected to be entropy stabilized.

More Details

Dynamic high pressure phase transformation of ZrW2O8

AIP Advances

Bishop, Sean R.; Lowry, Daniel R.; Peretti, Amanda S.; Foulk, James W.; Knudson, Marcus D.; Sarracino, Alex; Mahaffey, Jacob T.; Murray, Shannon E.

Phase transformations under high strain rates (dynamic compression) are examined in situ on ZrW2O8, a negative thermal expansion ternary ceramic displaying polymorphism. Amorphization, consistent with prior quasi-static measurements, was observed at a peak pressure of 3.0 GPa under dynamic conditions, which approximate those expected during fabrication. Evidence of partial amorphization was observed at lower pressure (1.8 GPa) that may be kinetically restrained by the short (<∼150 ns) time scale of the applied high pressure. The impact of kinetics of pressure-induced amorphization from material fabrication methods is briefly discussed.

More Details
Results 1–25 of 40
Results 1–25 of 40