Publications

Results 1–25 of 78

Search results

Jump to search filters

Refining Microstructures in Additively Manufactured Al/Cu Gradients Through TiB2 Inclusions

JOM

Abere, Michael J.; Choi, Hyein; Van Bastian, Levi; Jauregui, Luis J.; Babuska, Tomas F.; Rodriguez, Mark A.; DelRio, Frank W.; Whetten, Shaun R.; Kustas, Andrew K.

The additive manufacture of compositionally graded Al/Cu parts by laser engineered net shaping (LENS) is demonstrated. The use of a blue light build laser enabled deposition on a Cu substrate. The thermal gradient and rapid solidification inherent to selective laser melting enabled mass transport of Cu up to 4 mm from a Cu substrate through a pure Al deposition, providing a means of producing gradients with finer step sizes than the printed layer thicknesses. Divorcing gradient continuity from layer or particle size makes LENS a potentially enabling technology for the manufacture of graded density impactors for ramp compression experiments. Printing graded structures with pure Al, however, was prevented by the growth of Al2Cu3 dendrites and acicular grains amid a matrix of Al2Cu. A combination of adding TiB2 grain refining powder and actively varying print layer composition suppressed the dendritic growth mode and produced an equiaxed microstructure in a compositionally graded part. Material phase was characterized for crystal structure and nanoindentation hardness to enable a discussion of phase evolution in the rapidly solidifying melt pool of a LENS print.

More Details

Process-structure-property considerations for wire-based directed energy deposition of Ti-6Al-4V

Materials Characterization

Sims, Hannah; Pegues, Jonathan W.; Whetten, Shaun R.; Kustas, Andrew K.; Moore, David G.; Chilson, Tyler

Directed energy deposition (DED) is an attractive additive manufacturing (AM) process for large structural components. The rapid solidification and layer-by-layer process associated with DED results in non-ideal microstructures, such as large grains with strong crystallographic textures. These non-ideal microstructures can lead to severe anisotropy in the mechanical properties. Despite these challenges, DED has been identified as a potential solution for the manufacturing of near net shape Ti-6Al-4V preforms, replacing lost casting and forging capabilities. Two popular wire-based directed energy deposition (W-DED) processes were considered for the manufacturing of Ti-6Al-4V with assessments on their respective metallurgical and mechanical properties, as compared to a conventionally processed material. The two W-DED processes explored were wire arc additive manufacturing (WAAM) and electron beam additive manufacturing (EBAM). High throughput inspection and tensile testing procedures were utilized to generate statistically relevant data sets related to each process and sample orientation. The 2 AM technologies produced material with remarkably different microstructures and mechanical properties. Results revealed key differences in strength and ductility for the two disparate processes which were found to be related to differences in the metallurgical properties.

More Details

Design for Additive Manufacturing: Exploring Remelt Strategies to Tailor Density and Microstructure

Pegues, Jonathan W.; Rodgers, Theron R.; Whetten, Shaun R.; Dannemann, William J.; Saiz, David J.; Kustas, Andrew K.

The potential advantages of AM (e.g. weight reduction, novel geometries) are well understood within a systems context. However, adoption of AM at the system level has been slow due to the relative uncertainty in the final material properties, which leaves capabilities and/or performance gains unrealized. Utilizing remelt strategies it may be possible to expand the available process window to provide densities and microstructures beyond what is capable with standard scan strategies. This work explored remelting strategies for 316L stainless steel to tailor grain size and increase density. Twelve scan strategies were explored experimentally and computationally to understand the limitations of remelt strategies and the robustness of the current simulation package. Results show tailoring of grain size, density, and texture is achievable through remelting and several key lessons learned were made to improve the texture evaluation through simulation.

More Details

Additive Manufacturing of MITL's and Convolutes

Rose, Charles; Whetten, Shaun R.; Mahaffey, Jacob T.; Simpson, Sean S.; Saiz, David J.; Puckett, Raymond V.

Stockpile stewardship requires accurate and predictive models relying on the generation of extreme environments which is both incredibly difficult and profoundly necessary. Next generation pulsed power facilities (NGPPF), where these environments are created, may require a paradigm shift in equipment engineering/manufacture to fulfill this need. Therefore, this research aims to investigate the limitations, capabilities and efficacy of leveraging advancements in the field of additive manufacturing (AM) in order to produce novel power flow components for NGPPFs. This work focused on commercial 3D metal AM equipment producing several prototypes addressing prescient needs/shortcomings, and a technique wherein a lightweight polymer core is metalized. Ultimately, commercial 3D metal AM is considered a viable path forward but would require a sizeable investment and does not currently support the scale and complexity necessary for NGPPFs. Moreover, initial results from our composite technique are promising and is considered a realizable path forward given further investigation.

More Details

High-throughput additive manufacturing and characterization of refractory high entropy alloys

Applied Materials Today

Melia, Michael A.; Whetten, Shaun R.; Puckett, Raymond V.; Jones, Morgan J.; Heiden, Michael J.; Argibay, Nicolas A.; Kustas, Andrew K.

Refractory High Entropy Alloys (RHEAs) and Refractory Complex Concentrated Alloys (RCCAs) are high-temperature structural alloys ideally suited for use in harsh environments. While these alloys have shown promising structural properties at high temperatures that exceed the practical limits of conventional alloys, such as Ni-based superalloys, exploration of the complex phase-space of these materials remains a significant challenge. We report on a high-throughput alloy processing and characterization methodology, leveraging laser-based metal additive manufacturing (AM) and mechanical testing techniques, to enable rapid exploration of RHEAs/RCCAs. We utilized in situ alloying and compositional grading, unique to AM processing, to rapidly-produce RHEAs/RCCAs using readily available and inexpensive commercial elemental powders. We demonstrate this approach with the MoNbTaW alloy system, as a model material known for having exceptionally high strength at elevated temperature when processed using conventional methods (e.g., casting). Microstructure analysis, chemical composition, and strain rate dependent hardness of AM-processed material are presented and discussed in the context of understanding the structure-properties relationships of RHEAs/RCCAs.

More Details
Results 1–25 of 78
Results 1–25 of 78