Publications

Results 1–25 of 104

Search results

Jump to search filters

Economic Impacts of Irradiated High Assay Low-Enriched Uranium Fuel Management

Price, Laura L.; Kalinina, Elena A.; Farnum, Cathy O.

Commercial nuclear power plants typically use nuclear fuel that is enriched to less than five weight percent in the isotope 235U. However, recently several vendors have proposed new nuclear power plant designs that would use fuel with 235U enrichments between five weight percent and 19.75 weight percent. Nuclear fuel with this level of 235U enrichment is known as “high assay low-enriched uranium.” Once it has been irradiated in a nuclear reactor and becomes used (or spent) nuclear fuel, it will be stored, transported, and disposed of. However, irradiated high assay low-enriched uranium differs from typical irradiated nuclear fuel in several ways, and these differences may have economic effects on its storage, transport, and disposal, compared to typical irradiated nuclear fuel. This report describes those differences and qualitatively discusses their potential economic effects on storage, transport, and disposal.

More Details

On-Line Waste Library V5.0 Supporting Information

Price, Laura L.; Fontes, Diana

The On-Line Waste Library is a website that contains information regarding United States Department of Energy-managed high-level waste, spent nuclear fuel, and other wastes that are likely candidates for deep geologic disposal, with links to supporting documents for the data. This report provides supporting information for the data for which an already published source was not available.

More Details

Assessing the Consequences of Postclosure Criticality in Spent Nuclear Fuel

Nuclear Technology

Price, Laura L.; Alsaed, Halim; Basurto, Eduardo; Foulk, James W.; Davidson, Gregory; Swinney, Mathew

The U.S. Department of Energy is funding research into studying the consequences of postclosure criticality on the performance of a generic repository by (1) identifying the features, events, and processes (FEPs) that need to be considered in such an analysis, (2) developing the tools needed to model the relevant FEPs in a postclosure performance assessment, and (3) conducting analyses both with and without the occurrence of a postclosure criticality and comparing the results. This paper describes progress in this area of research and presents the results to date of analyzing the consequences of a postulated steady-state criticality in a hypothetical saturated shale repository. Preliminary results indicate that postclosure criticality would not affect repository performance.

More Details

Postclosure Criticality Analysis Results

Price, Laura L.; Basurto, Eduardo; Taconi, Anna M.; Jones, Philip G.; Barela, Amanda; Davidson, Greg; Swinney, Mathew; Kucinski, Nicholas; Panicker, N.; Wysocki, Aaron; Alsaed, Halim; Sanders, Charlotta; Prouty, Jeralyn

The United States Department of Energy’s (DOE) Office of Nuclear Energy’s Spent Fuel and Waste Science and Technology Campaign seeks to better understand the technical basis, risks, and uncertainty associated with the safe and secure disposition of spent nuclear fuel (SNF) and high-level radioactive waste. Commercial nuclear power generation in the United States has resulted in thousands of metric tons of SNF, the disposal of which is the responsibility of DOE (Nuclear Waste Policy Act of 1982, as amended). Any repository licensed to dispose of SNF must meet requirements regarding the long-term performance of that repository. The evaluation of long-term performance of the repository may need to consider the SNF achieving a critical configuration during the postclosure period. Of particular interest is the potential for this situation to occur in dual-purpose canisters (DPCs), which are currently licensed and being used to store and transport SNF but were not designed for permanent geologic disposal. DOE has been considering disposing of SNF in DPCs to avoid the costs and worker dose associated with repackaging the SNF currently stored in DPCs into repository-specific canisters. This report examines the consequences of postclosure criticality to provide technical support to DOE in developing a disposal plan.

More Details

Analysis of Transient Postclosure Criticality

Price, Laura L.; Alsaed, Halim; Jones, Philip G.; Sanders, Charlotta; Prouty, Jeralyn

The United States Department of Energy’s (DOE) Office of Nuclear Energy’s Spent Fuel and Waste Science and Technology Campaign seeks to better understand the technical basis, risks, and uncertainty associated with the safe and secure disposition of spent nuclear fuel (SNF) and high-level radioactive waste. Commercial nuclear power generation in the United States has resulted in thousands of metric tons of SNF, the disposal of which is the responsibility of the DOE (Nuclear Waste Policy Act of 1982, as amended). Any repository licensed to dispose of SNF must meet requirements regarding the long-term performance of that repository. For an evaluation of the long-term performance of the repository, one of the events that may need to be considered is the SNF achieving a critical configuration during the postclosure period. Of particular interest is the potential behavior of SNF in dual-purpose canisters (DPCs), which are currently licensed and being used to store and transport SNF but were not designed for permanent geologic disposal.

More Details

The Effect of DPC Fillers on FEPs Relevant to Disposal of SNF

Price, Laura L.; Rigali, Mark J.; Fortner, Jeffery

The US Department of Energy (DOE) is investigating the use of different materials that could be used to fill the void space inside a dual-purpose canister (DPC) loaded with spent nuclear fuel (SNF) just before it is emplaced in a deep geologic repository. The purpose of adding filler material is to maintain subcritical conditions in the repository during the postclosure period, which can span up to 1,000,000 years. Several types of materials have been proposed, including metals, cements, particulates, and glass. Part of this investigation addresses how the presence of filler material inside a DPC will affect the performance of the repository with respect to the repository features; the consequences of events that may occur; and the multiple thermal, hydrologic, chemical, and mechanical processes that may occur in a deep geologic repository over long timescales. This report describes some of the filler materials that have been proposed and studied; identifies 11 features, 6 events, and 25 processes that may be affected by the presence of filler materials; and discusses the effects that may require consideration for each feature, event, or process. The results of this study can be used to direct appropriate research and to develop suitable models if the DOE decides to use fillers to maintain subcritical conditions in DPCs used to dispose of SNF.

More Details

SFWST Disposal Research R&D 5-Year Plan (FY2023 Update)

Sassani, David C.; Birkholzer, Jens; Camphouse, Russell; Freeze, Geoffrey; Meacham, Janette; Mendez, Carmen M.; Price, Laura L.; Stein, Emily

This FY2023 report is the second update to the Disposal Research (DR) Research and Development (R&D) 5-year plan for the Spent Fuel and Waste Science and Technology (SFWST) Campaign DR R&D activities. In the planning for FY2020 in the U.S. Department of Energy (DOE) NE-81 SFWST Campaign, the DOE requested development of a high-level summary plan for activities in the DR R&D program for the next five (5)-year period, with periodic updates to this summary plan. The DR R&D 5-year plan was provided to the DOE based initially on the FY2020 priorities and program structure (initial 2020 version of this 5-year plan) and provides a strategic summary guide to the work within the DR R&D technical areas (Control Accounts, CA), focusing on the highest priority technical thrusts. This 5-year plan is a living document (planned to be updated periodically) that provides review of SFWST R&D accomplishments (as seen on the 2021 revision of this 5-year plan), describes changes to technical R&D prioritization based on (a) progress in each technical area (including external technical understanding) with specific accomplishments and (b) any changes in SFWST Campaign objectives and/or funding levels (i.e., Program Direction). Updates to this 5-year plan include the DR R&D adjustments to high-priority knowledge gaps to be investigated in the near-term, as well as the updated longer-term DR R&D directions for the program activities. This plan fulfills the Milestone M2SF23SN010304083 in DR Work Package (WP) SF-23SN01030408 (GDSA - Framework Development – SNL).

More Details

Advanced reactors spent fuel and waste streams disposition strategies

Matteo, Edward N.; Price, Laura L.; Pulido, Ramon J.; Weck, Philippe F.; Taconi, Anna M.; Mariner, Paul; Hadgu, Teklu; Park, Heeho D.; Greathouse, Jeffery A.; Sassani, David C.; Alsaed, Halim

This report describes research and development (R&D) activities conducted during Fiscal Year 2023 (FY23) in the Advanced Fuels and Advanced Reactor Waste Streams Strategies work package in the Spent Fuel Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). This report is focused on evaluating and cataloguing Advanced Reactor Spent Nuclear Fuel (AR SNF) and Advanced Reactor Waste Streams (ARWS) and creating Back-end Nuclear Fuel Cycle (BENFC) strategies for their disposition. The R&D team for this report is comprised of researchers from Sandia National Laboratories and Enviro Nuclear Services, LLC.

More Details

On-Line Waste Library V4.0 Supporting Information

Price, Laura L.

The On-Line Waste Library is a website that contains information regarding United States Department of Energy-managed high-level waste, spent nuclear fuel, and other wastes that are likely candidates for deep geologic disposal, with links to supporting documents for the data. This report provides supporting information for the data for which an already published source was not available.

More Details

Results of Re-evaluation of FEPs Related to Implementing the ABD Glass Program

Price, Laura L.; Alsaed, Halim; Prouty, Jeralyn; Rogers, Ralph; Ebert, William; Hadgu, Teklu; Mariner, Paul

More Details
Results 1–25 of 104
Results 1–25 of 104