This report summarizes the activities performed by Sandia National Laboratories in FY23 to identify and test coating materials for the prevention, mitigation, and/or repair of potential chloride-induced stress corrosion cracking in spent nuclear fuel dry storage canisters. This work continues efforts by Sandia National Laboratories that are summarized in previous reports from FY20 through FY22 on the same topic. In FY23, Sandia National Laboratories, in collaboration with five industry partners through a memorandum of understanding, evaluated the physical, mechanical, and corrosion-resistance properties of eight different coating systems. The evaluation included thermal and radiation environments relevant to various time periods of storage for spent nuclear fuel canisters. The coating systems include polymeric (polyetherketoneketone, modified polyimide/polyurea, modified phenolic resin, epoxy), organic/inorganic ceramic hybrids (silane-based polyurethane hybrid and a quasi-ceramic sol-gel polyurethane hybrid), and coatings utilizing a Zn-rich primer applied to stainless steel coupons. The results and implications of these tests are summarized in this report. These analyses will be used to identify the most effective coatings for potential use on spent nuclear fuel dry storage canisters and to identify specific needs for further optimization of coating technologies for application on spent nuclear fuel canisters.
This report summarizes the activities performed by Sandia National Laboratories in FY22 to identify and test coating materials for the prevention, mitigation, and/or repair of potential chloride-induced stress corrosion cracking in spent nuclear fuel dry storage canisters. This work continues efforts by Sandia National Laboratories that are summarized in previous reports in FY20 and FY21 on the same topic. The previous work detailed the specific coating properties desired for application and implementation to spent nuclear fuel canisters (FY20) and identified several potential coatings for evaluation (FY21). In FY22, Sandia National Laboratories, in collaboration with four industry partners through a Memorandum of Understanding, started evaluating the physical, mechanical, and corrosion-resistance properties of 6 different coating systems (11 total coating variants) to develop a baseline understanding of the viability of each coating type for use to prevent, mitigate, and/or repair potential stress corrosion on cracking on spent nuclear fuel canisters. This collaborative R&D program leverages the analytical and laboratory capabilities at Sandia National Laboratories and the material design and synthesis capabilities of the industry collaborators. The coating systems include organic (polyetherketoneketone, modified polyimide/polyurea, modified phenolic resin), organic/inorganic ceramic hybrids (silane-based polyurethane hybrid and a quasi-ceramic sol-gel polyurethane hybrid), and hybrid systems in conjuncture with a Zn-rich primer. These coatings were applied to stainless steel coupons (the same coupons were supplied to all vendors by SNL for direct comparison) and have undergone several physical, mechanical, and electrochemical tests. The results and implications of these tests are summarized in this report. These analyses will be used to identify the most effective coatings for potential use on spent nuclear fuel dry storage canisters, and also to identify specific needs for further optimization of coating technologies for their application on spent nuclear fuel canisters. In FY22, Sandia National Laboratories performed baseline testing and atmospheric exposure tests of the coating samples supplied by the vendors in accordance with the scope of work defined in the Memorandum of Understanding. In FY23, Sandia National Laboratories will continue evaluating coating performance with a focus on thermal and radiolytic stability.
This report describes the proposed surface sampling techniques and plan for the multi-year Canister Deposition Field Demonstration (CDFD). The CDFD is primarily a dust deposition test that will use three commercial 32PTH2 NUHOMS welded stainless steel storage canisters in Advanced Horizontal Storage Modules, with planned exposure testing for up to 10 years at an operating ISFSI site. One canister will be left at ambient condition, unheated; the other two will have heaters to achieve canister surface temperatures that match, to the degree possible, spent nuclear fuel (SNF) loaded canisters with heat loads of 10 kW and 40 kW. Surface sampling campaigns for dust analysis will take place on a yearly or bi-yearly basis. The goal of the planned dust sampling and analysis is to determine important environmental parameters that impact the potential occurrence of stress corrosion cracking on SNF dry storage canisters. Specifically, measured dust deposition rates and deposited particle sizes will improve parameterization of dust deposition models employed to predict the potential occurrence and timing of stress corrosion cracks on the stainless steel SNF canisters. The size, morphology, and composition of the deposited dust and salt particles will be quantified, as well as the soluble salt load per unit area and the rate of deposition, as a function of canister surface temperature, location, time, and orientation. Previously, a preliminary sampling plan was developed, identifying possible sampling locations on the canister surfaces and sampling intervals; possible sampling methods were also described. Further development of the sampling plan has commenced through three different tasks. First, canister surface roughness, a potentially important parameter for air flow and dust deposition, was characterized at several locations on one of the test canisters. Second, corrosion testing to evaluate the potential lifetime and aging of thermocouple wires, spot welds, and attachments was initiated. Third, hand sampling protocols were developed, and initial testing was carried out. The results of those efforts are presented in this report. The information obtained from the CDFD will be critical for ongoing efforts to develop a detailed understanding of the potential for stress corrosion cracking of SNF dry storage canisters.
This progress report describes work performed during FY21 at Sandia National Laboratories (SNL) to assess the localized corrosion performance of canister materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. In FY21, modeling and experimental work was performed that further defined our understanding of the potential chemical and physical environment present on canister surfaces at both marine and inland sites. Research also evaluated the relationship between the environment and the rate, extent, and morphology of corrosion, as well as the corrosion processes that occur. Finally, crack growth rate testing under relevant environmental conditions was initiated.