Publications

Results 1–25 of 63

Search results

Jump to search filters

Mining experimental magnetized liner inertial fusion data: Trends in stagnation morphology

Physics of Plasmas

Laros, James H.; Yager-Elorriaga, David A.; Jennings, Christopher A.; Fein, Jeffrey R.; Shipley, Gabriel A.; Porwitzky, Andrew J.; Awe, Thomas J.; Gomez, Matthew R.; Harding, Eric H.; Harvey-Thompson, Adam J.; Knapp, Patrick F.; Mannion, Owen M.; Ruiz, Daniel E.; Schaeuble, Marc-Andre S.; Slutz, Stephen A.; Weis, Matthew R.; Woolstrum, Jeffrey M.; Ampleford, David A.; Shulenburger, Luke N.

More Details

Developing and applying quantifiable metrics for diagnostic and experiment design on Z

Laros, James H.; Knapp, Patrick F.; Beckwith, Kristian B.; Evstatiev, Evstati G.; Fein, Jeffrey R.; Jennings, Christopher A.; Joseph, Roshan; Klein, Brandon T.; Maupin, Kathryn A.; Nagayama, Taisuke N.; Patel, Ravi G.; Schaeuble, Marc-Andre S.; Vasey, Gina; Ampleford, David A.

This project applies methods in Bayesian inference and modern statistical methods to quantify the value of new experimental data, in the form of new or modified diagnostic configurations and/or experiment designs. We demonstrate experiment design methods that can be used to identify the highest priority diagnostic improvements or experimental data to obtain in order to reduce uncertainties on critical inferred experimental quantities and select the best course of action to distinguish between competing physical models. Bayesian statistics and information theory provide the foundation for developing the necessary metrics, using two high impact experimental platforms on Z as exemplars to develop and illustrate the technique. We emphasize that the general methodology is extensible to new diagnostics (provided synthetic models are available), as well as additional platforms. We also discuss initial scoping of additional applications that began development in the last year of this LDRD.

More Details

X-ray self-emission imaging with spherically bent Bragg crystals on the Z-machine

Review of Scientific Instruments

Robertson, Grafton K.; Dunham, Gregory S.; Gomez, Matthew R.; Fein, Jeffrey R.; Knapp, Patrick K.; Harvey-Thompson, Adam J.; Speas, Christopher S.; Ampleford, David A.; Rochau, G.A.; Maron, Y.; Doron, R.; Harding, Eric H.

An x-ray imaging scheme using spherically bent crystals was implemented on the Z-machine to image x rays emitted by the hot, dense plasma generated by a Magnetized Liner Inertial Fusion (MagLIF) target. This diagnostic relies on a spherically bent crystal to capture x-ray emission over a narrow spectral range (<15 eV), which is established by a limiting aperture placed on the Rowland circle. The spherical crystal optic provides the necessary high-throughput and large field-of-view required to produce a bright image over the entire, one-cm length of the emitting column of a plasma. The average spatial resolution was measured and determined to be 18 µm for the highest resolution configuration. With this resolution, the radial size of the stagnation column can be accurately determined and radial structures, such as bifurcations in the column, are clearly resolved. The success of the spherical-crystal imager has motivated the implementation of a new, two-crystal configuration for identifying sources of spectral line emission using a differential imaging technique.

More Details

Demonstration of improved laser preheat with a cryogenically cooled magnetized liner inertial fusion platform

Review of Scientific Instruments

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Crabtree, Jerry A.; Weis, Matthew R.; Gomez, Matthew R.; Fein, Jeffrey R.; Laros, James H.; Ampleford, David A.; Awe, Thomas J.; Chandler, Gordon A.; Hansen, Stephanie B.; Jennings, Christopher A.; Knapp, Patrick K.; Kimmel, Mark W.; Mangan, Michael M.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.; Ruiz, Daniel E.; Hanson, Joseph C.; Harding, Eric H.; Perea, L.; Robertson, Grafton K.; Shores, Jonathon S.; Slutz, Stephen A.; Smith, G.E.; Speas, Christopher S.; Yager-Elorriaga, David A.; York, Adam Y.

We report on progress implementing and testing cryogenically cooled platforms for Magnetized Liner Inertial Fusion (MagLIF) experiments. Two cryogenically cooled experimental platforms were developed: an integrated platform fielded on the Z pulsed power generator that combines magnetization, laser preheat, and pulsed-power-driven fuel compression and a laser-only platform in a separate chamber that enables measurements of the laser preheat energy using shadowgraphy measurements. The laser-only experiments suggest that ∼89% ± 10% of the incident energy is coupled to the fuel in cooled targets across the energy range tested, significantly higher than previous warm experiments that achieved at most 67% coupling and in line with simulation predictions. The laser preheat configuration was applied to a cryogenically cooled integrated experiment that used a novel cryostat configuration that cooled the MagLIF liner from both ends. The integrated experiment, z3576, coupled 2.32 ± 0.25 kJ preheat energy to the fuel, the highest to-date, demonstrated excellent temperature control and nominal current delivery, and produced one of the highest pressure stagnations as determined by a Bayesian analysis of the data.

More Details

Helium as a Surrogate for Deuterium in LPI Studies

Laser and Particle Beams

Geissel, Matthias G.; Harvey-Thompson, Adam J.; Weis, Matthew R.; Fein, Jeffrey R.; Bliss, David E.; Kimmel, Mark W.; Shores, Jonathon S.; Smith, Ian C.; Jennings, Christopher A.; Porter, John L.; Rambo, Patrick K.; Ampleford, David A.; Hansen, Aaron

Helium or neopentane can be used as surrogate gas fill for deuterium (D2) or deuterium-tritium (DT) in laser-plasma interaction studies. Surrogates are convenient to avoid flammability hazards or the integration of cryogenics in an experiment. To test the degree of equivalency between deuterium and helium, experiments were conducted in the Pecos target chamber at Sandia National Laboratories. Observables such as laser propagation and signatures of laser-plasma instabilities (LPI) were recorded for multiple laser and target configurations. It was found that some observables can differ significantly despite the apparent similarity of the gases with respect to molecular charge and weight. While a qualitative behaviour of the interaction may very well be studied by finding a suitable compromise of laser absorption, electron density, and LPI cross sections, a quantitative investigation of expected values for deuterium fills at high laser intensities is not likely to succeed with surrogate gases.

More Details

Maximization of Laser Coupling with Cryogenic Targets

Geissel, Matthias G.; Hansen, Aaron; Harvey-Thompson, Adam J.; Weis, Matthew R.; Crabtree, Jerry A.; Ampleford, David A.; Beckwith, Kristian B.; Fein, Jeffrey R.; Gomez, Matthew R.; Hanson, Joseph C.; Jennings, Christopher A.; Kimmel, Mark W.; Maurer, A.; Rambo, Patrick K.; Shores, Jonathon S.; Smith, Ian C.; Speas, Robert J.; Speas, Christopher S.; Porter, John L.

Abstract not provided.

Harmonic Generation and Inverse Cascade in the z-Pinch Driven, Preseeded Multimode, Magneto-Rayleigh-Taylor Instability

Physical Review Letters

Ruiz, Daniel E.; Yager-Elorriaga, David A.; Peterson, Kyle J.; Sinars, Daniel S.; Weis, Matthew R.; Schroen, D.G.; Tomlinson, K.; Fein, Jeffrey R.; Beckwith, Kristian B.

The magneto-Rayleigh-Taylor instability (MRTI) plays an essential role in astrophysical systems and in magneto-inertial fusion, where it is known to be an important degradation mechanism of confinement and target performance. In this Letter, we show for the first time experimental evidence of mode mixing and the onset of an inverse-cascade process resulting from the nonlinear coupling of two discrete preseeded axial modes (400- and 550-μm wavelengths) on an Al liner that is magnetically imploded using the 20-MA, 100-ns rise-time Z Machine at Sandia National Laboratories. Four radiographs captured the temporal evolution of the MRTI. We introduce a novel unfold technique to analyze the experimental radiographs and compare the results to simulations and to a weakly nonlinear model. We find good quantitative agreement with simulations using the radiation magnetohydrodynamics code hydra. Spectral analysis of the MRTI time evolution obtained from the simulations shows evidence of harmonic generation, mode coupling, and the onset of an inverse-cascade process. The experiments provide a benchmark for future work on the MRTI and motivate the development of new analytical theories to better understand this instability.

More Details

Self-Emission Crystal Imaging of MagLIF Targets on Z

Harding, Eric H.; Fein, Jeffrey R.; Laros, James H.; Robertson, Grafton K.; Gomez, Matthew R.; Hansen, Stephanie B.; Harvey-Thompson, Adam J.; Dunham, Gregory S.; Slutz, Stephen A.; Weis, Matthew R.; Jennings, Christopher A.; Maurer, A.; Ampleford, David A.; Rochau, G.A.; Doron, R.; Nedostup, O.; Stambulchik, E.; Zarnitsky, Y.; Maron, Y.; Paguio, Reny; Tomlinson, Kurt; Huang, H.; Smith, Gary; Taylor, Randy

Abstract not provided.

Studying the Richtmyer–Meshkov instability in convergent geometry under high energy density conditions using the Decel platform

Physics of Plasmas

Yager-Elorriaga, David A.; Doss, Forrest W.; Shipley, Gabriel A.; Ruiz, Daniel E.; Porwitzky, Andrew J.; Fein, Jeffrey R.; Merritt, Elizabeth C.; Martin, Matthew; Myers, Clayton E.; Jennings, Christopher A.; Marshall, Dustin J.; Shulenburger, Luke N.

The “Decel” platform at Sandia National Laboratories investigates the Richtmyer–Meshkov instability (RMI) in converging geometry under high energy density conditions [Knapp et al., Phys. Plasmas 27, 092707 (2020)]. In Decel, the Z machine magnetically implodes a cylindrical beryllium liner filled with liquid deuterium, launching a converging shock toward an on-axis beryllium rod machined with sinusoidal perturbations. The passage of the shock deposits vorticity along the Be/D2 interface, causing the perturbations to grow. In this paper, we present platform improvements along with recent experimental results. To improve the stability of the imploding liner to the magneto Rayleigh–Taylor instability, we modified its acceleration history by shortening the Z electrical current pulse. Next, we introduce a “split rod” configuration that allows two axial modes to be fielded simultaneously in different axial locations along the rod, doubling our data per experiment. We then demonstrate that asymmetric slots in the return current structure modify the magnetic drive pressure on the surface of the liner, advancing the evolution on one side of the rod by multiple ns compared to its 180° counterpart. This effectively enables two snapshots of the instability at different stages of evolution per radiograph with small deviations of the cross-sectional profile of the rod from the circular. Using this platform, we acquired RMI data at 272 and 157 μm wavelengths during the single shock stage. Finally, we demonstrate the utility of these data for benchmarking simulations by comparing calculations using ALEGRA MHD and RageRunner.

More Details

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Nuclear Fusion

Yager-Elorriaga, David A.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Weis, Matthew R.; Weisy; Awe, Thomas J.; Chandler, Gordon A.; Myers, Clayton E.; Fein, Jeffrey R.; Galloway, B.R.; Geissel, Matthias G.; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Laros, James H.; Rambo, Patrick K.; Robertson, Grafton K.; Savage, Mark E.; Shipley, Gabriel A.; Schwarz, Jens S.; Ampleford, David A.; Beckwith, Kristian B.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.

We present an overview of the magneto-inertial fusion (MIF) concept MagLIF (Magnetized Liner Inertial Fusion) pursued at Sandia National Laboratories and review some of the most prominent results since the initial experiments in 2013. In MagLIF, a centimeter-scale beryllium tube or "liner" is filled with a fusion fuel, axially pre-magnetized, laser pre-heated, and finally imploded using up to 20 MA from the Z machine. All of these elements are necessary to generate a thermonuclear plasma: laser preheating raises the initial temperature of the fuel, the electrical current implodes the liner and quasi-adiabatically compresses the fuel via the Lorentz force, and the axial magnetic field limits thermal conduction from the hot plasma to the cold liner walls during the implosion. MagLIF is the first MIF concept to demonstrate fusion relevant temperatures, significant fusion production (>10^13 primary DD neutron yield), and magnetic trapping of charged fusion particles. On a 60 MA next-generation pulsed-power machine, two-dimensional simulations suggest that MagLIF has the potential to generate multi-MJ yields with significant self-heating, a long-term goal of the US Stockpile Stewardship Program. At currents exceeding 65 MA, the high gains required for fusion energy could be achievable.

More Details
Results 1–25 of 63
Results 1–25 of 63