Publications

1 Result
Skip to search filters

Carbon Capture in Novel Porous Liquids

Rimsza, Jessica R.; Nenoff, T.M.; Christian, Matthew S.; Hurlock, Matthew H.

Direct air capture (DAC) of CO2 is one of the negative emission technologies under development to limit the impacts of climate change. The dilute concentration of CO2 in the atmosphere (~400 ppm) requires new materials for carbon capture with increased CO2 selectivity that is not met with current materials. Porous liquids (PLs) are an emerging material that consist of a combination of solvents and porous hosts creating a liquid with permanent porosity. PLs have demonstrated excellent CO2 selectivity, but the features that control how and why PLs selectively capture CO2 is unknown. To elucidate these mechanisms, density functional theory (DFT) simulations were used to investigate two different PLs. The first is a ZIF-8 porous host in a water/glycol/2-methylimidazole solvent. The second is the CC13 porous organic cage with multiple bulky solvents. DFT simulations identified that in both systems, CO2 preferentially bound in the pore window rather than in the internal pore space, identifying that the solvent-porous host interface controls the CO2 selectivity. Additionally, SNL synthesized ZIF-8 based PL compositions. Evaluation of the long-term stability of the PL identified no change in the ZIF-8 crystallinity after multiple agitation cycles, identifying its potential for use in carbon capture systems. Through this project, SNL has developed a fundamental understanding of solvent-host interactions, as well as how and where CO2 binds in PLs. Through these results, future efforts will focus not on how CO2 behaves inside the pore, but on the porous host-solvent interface as the driving force for PL stability and CO2 selectivity.

More Details
1 Result
1 Result