Publications

Results 1–25 of 181

Search results

Jump to search filters

Inferring Stochastic Rates from Heterogeneous Snapshots of Particle Positions

Bulletin of Mathematical Biology

Lehoucq, Richard B.; Mckinley, Scott A.; Miles, Christopher E.; Ding, Fangyuan

Many imaging techniques for biological systems—like fixation of cells coupled with fluorescence microscopy—provide sharp spatial resolution in reporting locations of individuals at a single moment in time but also destroy the dynamics they intend to capture. These snapshot observations contain no information about individual trajectories, but still encode information about movement and demographic dynamics, especially when combined with a well-motivated biophysical model. The relationship between spatially evolving populations and single-moment representations of their collective locations is well-established with partial differential equations (PDEs) and their inverse problems. However, experimental data is commonly a set of locations whose number is insufficient to approximate a continuous-in-space PDE solution. Here, motivated by popular subcellular imaging data of gene expression, we embrace the stochastic nature of the data and investigate the mathematical foundations of parametrically inferring demographic rates from snapshots of particles undergoing birth, diffusion, and death in a nuclear or cellular domain. Toward inference, we rigorously derive a connection between individual particle paths and their presentation as a Poisson spatial process. Using this framework, we investigate the properties of the resulting inverse problem and study factors that affect quality of inference. One pervasive feature of this experimental regime is the presence of cell-to-cell heterogeneity. Rather than being a hindrance, we show that cell-to-cell geometric heterogeneity can increase the quality of inference on dynamics for certain parameter regimes. Altogether, the results serve as a basis for more detailed investigations of subcellular spatial patterns of RNA molecules and other stochastically evolving populations that can only be observed for single instants in their time evolution.

More Details

A Stochastic Calculus Approach to Boltzmann Transport

Nuclear Science and Engineering

Smith, John D.; Lehoucq, Richard B.; Franke, Brian C.

Traditional Monte Carlo methods for particle transport utilize source iteration to express the solution, the flux density, of the transport equation as a Neumann series. Our contribution is to show that the particle paths simulated within source iteration are associated with the adjoint flux density and the adjoint particle paths are associated with the flux density. We make our assertion rigorous through the use of stochastic calculus by representing the particle path used in source iteration as a solution to a stochastic differential equation (SDE). The solution to the adjoint Boltzmann equation is then expressed in terms of the same SDE, and the solution to the Boltzmann equation is expressed in terms of the SDE associated with the adjoint particle process. An important consequence is that the particle paths used within source iteration simultaneously provide Monte Carlo samples of the flux density and adjoint flux density in the detector and source regions, respectively. The significant practical implication is that particle trajectories can be reused to obtain both forward and adjoint quantities of interest. To the best our knowledge, the reuse of entire particles paths has not appeared in the literature. Monte Carlo simulations are presented to support the reuse of the particle paths.

More Details

Zero-truncated Poisson regression for sparse multiway count data corrupted by false zeros

Information and Inference

Dunlavy, Daniel D.; Lehoucq, Richard B.; Lopez, Oscar F.

We propose a novel statistical inference methodology for multiway count data that is corrupted by false zeros that are indistinguishable from true zero counts. Our approach consists of zero-truncating the Poisson distribution to neglect all zero values. This simple truncated approach dispenses with the need to distinguish between true and false zero counts and reduces the amount of data to be processed. Inference is accomplished via tensor completion that imposes low-rank tensor structure on the Poisson parameter space. Our main result shows that an N-way rank-R parametric tensor M ∈ (0, ∞)I×.....×I generating Poisson observations can be accurately estimated by zero-truncated Poisson regression from approximately IR2 log22(I) non-zero counts under the nonnegative canonical polyadic decomposition. Our result also quantifies the error made by zero-truncating the Poisson distribution when the parameter is uniformly bounded from below. Therefore, under a low-rank multiparameter model, we propose an implementable approach guaranteed to achieve accurate regression in under-determined scenarios with substantial corruption by false zeros. Several numerical experiments are presented to explore the theoretical results.

More Details

Sensitivity Analyses for Monte Carlo Sampling-Based Particle Simulations

Bond, Stephen D.; Franke, Brian C.; Lehoucq, Richard B.; Mckinley, Scott A.

Computational design-based optimization is a well-used tool in science and engineering. Our report documents the successful use of a particle sensitivity analysis for design-based optimization within Monte Carlo sampling-based particle simulation—a currently unavailable capability. Such a capability enables the particle simulation communities to go beyond forward simulation and promises to reduce the burden on overworked analysts by getting more done with less computation.

More Details

Entropy and its Relationship with Statistics

Lehoucq, Richard B.; Mayer, Carolyn D.; Tucker, James D.

The purpose of our report is to discuss the notion of entropy and its relationship with statistics. Our goal is to provide a manner in which you can think about entropy, its central role within information theory and relationship with statistics. We review various relationships between information theory and statistics—nearly all are well-known but unfortunately are often not recognized. Entropy quantities the "average amount of surprise" in a random variable and lies at the heart of information theory, which studies the transmission, processing, extraction, and utilization of information. For us, data is information. What is the distinction between information theory and statistics? Information theorists work with probability distributions. Instead, statisticians work with samples. In so many words, information theory using samples is the practice of statistics.

More Details

Neuromorphic scaling advantages for energy-efficient random walk computations

Nature Electronics

Smith, John D.; Hill, Aaron J.; Reeder, Leah E.; Franke, Brian C.; Lehoucq, Richard B.; Parekh, Ojas D.; Severa, William M.; Aimone, James B.

Neuromorphic computing, which aims to replicate the computational structure and architecture of the brain in synthetic hardware, has typically focused on artificial intelligence applications. What is less explored is whether such brain-inspired hardware can provide value beyond cognitive tasks. Here we show that the high degree of parallelism and configurability of spiking neuromorphic architectures makes them well suited to implement random walks via discrete-time Markov chains. These random walks are useful in Monte Carlo methods, which represent a fundamental computational tool for solving a wide range of numerical computing tasks. Using IBM’s TrueNorth and Intel’s Loihi neuromorphic computing platforms, we show that our neuromorphic computing algorithm for generating random walk approximations of diffusion offers advantages in energy-efficient computation compared with conventional approaches. We also show that our neuromorphic computing algorithm can be extended to more sophisticated jump-diffusion processes that are useful in a range of applications, including financial economics, particle physics and machine learning.

More Details

Zero-Truncated Poisson Tensor Decomposition for Sparse Count Data

Lopez, Oscar F.; Lehoucq, Richard B.; Dunlavy, Daniel D.

We propose a novel statistical inference paradigm for zero-inflated multiway count data that dispenses with the need to distinguish between true and false zero counts. Our approach ignores all zero entries and applies zero-truncated Poisson regression on the positive counts. Inference is accomplished via tensor completion that imposes low-rank structure on the Poisson parameter space. Our main result shows that an $\textit{N}$-way rank-R parametric tensor 𝓜 ϵ (0, ∞)$I$Χ∙∙∙Χ$I$ generating Poisson observations can be accurately estimated from approximately $IR^2 \text{log}^2_2(I)$ non-zero counts for a nonnegative canonical polyadic decomposition. Several numerical experiments are presented demonstrating that our zero-truncated paradigm is comparable to the ideal scenario where the locations of false zero counts are known $\textit{a priori}$.

More Details

The Effect of the Ill-posed Problem on Quantitative Error Assessment in Digital Image Correlation

Experimental Mechanics

Turner, Daniel Z.; Lehoucq, Richard B.; Reu, Phillip L.

This work explores the effect of the ill-posed problem on uncertainty quantification for motion estimation using digital image correlation (DIC) (Sutton et al. [2009]). We develop a correction factor for standard uncertainty estimates based on the cosine of the angle between the true motion and the image gradients, in an integral sense over a subregion of the image. This correction factor accounts for variability in the DIC solution previously unaccounted for when considering only image noise, interpolation bias, contrast, and the software settings such as subset size and spacing.

More Details

Particle Sensitivity Analysis

Lehoucq, Richard B.; Franke, Brian C.; Bond, Stephen D.; Mckinley, Scott A.

We propose to develop a computational sensitivity analysis capability for Monte Carlo sampling-based particle simulation relevant to Aleph, Cheetah-MC, Empire, Emphasis, ITS, SPARTA, and LAMMPS codes. These software tools model plasmas, radiation transport, low-density fluids, and molecular motion. Our report demonstrates how adjoint optimization methods can be combined with Monte Carlo sampling-based adjoint particle simulation. Our goal is to develop a sensitivity analysis to drive robust design-based optimization for Monte Carlo sampling-based particle simulation - a currently unavailable capability.

More Details

Neuromorphic scaling advantages for energy-efficient random walk computations

Smith, John D.; Hill, Aaron J.; Reeder, Leah; Franke, Brian C.; Lehoucq, Richard B.; Parekh, Ojas D.; Severa, William M.; Aimone, James B.

Computing stands to be radically improved by neuromorphic computing (NMC) approaches inspired by the brain's incredible efficiency and capabilities. Most NMC research, which aims to replicate the brain's computational structure and architecture in man-made hardware, has focused on artificial intelligence; however, less explored is whether this brain-inspired hardware can provide value beyond cognitive tasks. We demonstrate that high-degree parallelism and configurability of spiking neuromorphic architectures makes them well-suited to implement random walks via discrete time Markov chains. Such random walks are useful in Monte Carlo methods, which represent a fundamental computational tool for solving a wide range of numerical computing tasks. Additionally, we show how the mathematical basis for a probabilistic solution involving a class of stochastic differential equations can leverage those simulations to provide solutions for a range of broadly applicable computational tasks. Despite being in an early development stage, we find that NMC platforms, at a sufficient scale, can drastically reduce the energy demands of high-performance computing platforms.

More Details

Solving a steady-state PDE using spiking networks and neuromorphic hardware

ACM International Conference Proceeding Series

Smith, John D.; Severa, William M.; Hill, Aaron J.; Reeder, Leah E.; Franke, Brian C.; Lehoucq, Richard B.; Parekh, Ojas D.; Aimone, James B.

The widely parallel, spiking neural networks of neuromorphic processors can enable computationally powerful formulations. While recent interest has focused on primarily machine learning tasks, the space of appropriate applications is wide and continually expanding. Here, we leverage the parallel and event-driven structure to solve a steady state heat equation using a random walk method. The random walk can be executed fully within a spiking neural network using stochastic neuron behavior, and we provide results from both IBM TrueNorth and Intel Loihi implementations. Additionally, we position this algorithm as a potential scalable benchmark for neuromorphic systems.

More Details
Results 1–25 of 181
Results 1–25 of 181