Publications

Results 1–25 of 164

Search results

Jump to search filters

Model Development for Thermal-Hydrology Simulations of a Full-Scale Heater Experiment in Opalinus Clay

Nuclear Technology

Hadgu, Teklu; Matteo, Edward N.; Dewers, Thomas

Disposal of commercial spent nuclear fuel in a geologic repository is studied. In situ heater experiments in underground research laboratories provide a realistic representation of subsurface behavior under disposal conditions. This study describes process model development and modeling analysis for a full-scale heater experiment in opalinus clay host rock. The results of thermal-hydrology simulation, solving coupled nonisothermal multiphase flow, and comparison with experimental data are presented. The modeling results closely match the experimental data.

More Details

M4 Summary of EBS International Activity

Hadgu, Teklu; Matteo, Edward N.

Thermal-Hydrologic (TH) modeling of DECOVALEX 2023, Task C has continued in FY23. This report summarizes progress in TH modeling of Step 1c, with calibration modeling and the addition of shotcrete. The work involves 3-D modeling of the full-scale emplacement experiment at the Mont Terri Underground Rock Laboratory (Nagra, 2019). While Step 1 is focused on modeling the heating phase of the FE experiment with changes in pore pressure in the Opalinus clay resulting from heating, Step 1c is focused on calibration of models using available data.

More Details

Advanced reactors spent fuel and waste streams disposition strategies

Matteo, Edward N.; Price, Laura L.; Pulido, Ramon J.; Weck, Philippe F.; Taconi, Anna M.; Mariner, Paul; Hadgu, Teklu; Park, Heeho D.; Greathouse, Jeffery A.; Sassani, David C.; Alsaed, Halim

This report describes research and development (R&D) activities conducted during Fiscal Year 2023 (FY23) in the Advanced Fuels and Advanced Reactor Waste Streams Strategies work package in the Spent Fuel Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). This report is focused on evaluating and cataloguing Advanced Reactor Spent Nuclear Fuel (AR SNF) and Advanced Reactor Waste Streams (ARWS) and creating Back-end Nuclear Fuel Cycle (BENFC) strategies for their disposition. The R&D team for this report is comprised of researchers from Sandia National Laboratories and Enviro Nuclear Services, LLC.

More Details

Evaluation of Engineered Barrier Systems (FY2022 Report)

Matteo, Edward N.; Dewers, Thomas; Hadgu, Teklu; Taylor, Autumn D.

This report describes research and development (R&D) activities conducted during Fiscal Year 2022 (FY22) specifically related to the Engineered Barrier System (EBS) R&D Work Package in the Spent Fuel Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). The R&D activities focus on understanding EBS component evolution and interactions within the EBS, as well as interactions between the host media and the EBS. The R&D team represented in this report consists of individuals from Sandia National Laboratories, Lawrence Berkeley National Laboratory (LBNL), Los Alamos National Laboratory (LANL), and Vanderbilt University. EBS R&D work also leverages international collaborations to ensure that the DOE program is active and abreast of the latest advances in nuclear waste disposal.

More Details

M4 Summary of EBS International

Hadgu, Teklu; Dewers, Thomas; Matteo, Edward N.

Thermal-Hydrologic-Mechanical (THM) modeling of DECOVALEX 2023, Task C has continued. In FY2022 the simulations have progressed to Step 1, which is on 3-D modeling of the full-scale emplacement experiment at the Mont Terri Underground Rock Laboratory (Nagra, 2019). This report summarizes progress in Thermal-Hydrologic (TH) modeling of Step 1. THM modeling will be documented in future reports.

More Details

Results of Re-evaluation of FEPs Related to Implementing the ABD Glass Program

Price, Laura L.; Alsaed, Halim; Prouty, Jeralyn; Rogers, Ralph; Ebert, William; Hadgu, Teklu; Mariner, Paul

More Details

RANGERS: State of the Art and Science on Engineered Barrier Systems in Salt Formations

Simo, Eric K.; Herold, Philipp; Keller, Andreas; Lommerzheim, Andree; Matteo, Edward N.; Hadgu, Teklu; Jayne, Richard; Kuhlman, Kristopher L.; Mills, Melissa M.

The construction of deep geological repositories (DGR) in salt formations requires penetrating through naturally sealing geosphere layers. While the emplaced nuclear waste is primarily protected by the containment-providing rock zone (CRZ), technical barriers are required, for example during handling. For closure geotechnical barriers seal the repository along the accesses against water or solutions from outside and the possible emission paths for radionuclides contained inside. As these barriers must ensure maintenance-free function on a long-term basis, they typically comprise a set of specialized elements with diversified functions that may be used redundantly. The effects of the individual elements are coordinated so that they are collectively referred to as the Engineered Barrier System (EBS).

More Details

Evaluation of Engineered Barrier Systems FY21 Report

Matteo, Edward N.; Dewers, Thomas; Hadgu, Teklu; Bell, Nelson S.; Foulk, James W.; Kotula, Paul G.; Kruichak-Duhigg, Jessica N.; Sanchez-Hernandez, Bernadette A.; Casilas, M.R.; Kolesnichenko, Igor V.; Caporuscio, F.; Sauer, K.B.; Rock, M.; Zheng, L.; Borglin, S.; Lammers, L.; Whittaker, M.; Zarzycki, P.; Fox, P.; Chang, C.; Subramanian, N.; Nico, P.; Tournassat, C.; Chou, C.; Xu, H.; Singer, E.; Steefel, C.; Peruzzo, L.; Wu, Y.

This report describes research and development (R&D) activities conducted during fiscal year 2021 (FY21) specifically related to the Engineered Barrier System (EBS) R&D Work Package in the Spent Fuel and Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). The R&D activities focus on understanding EBS component evolution and interactions within the EBS, as well as interactions between the host media and the EBS. A primary goal is to advance the development of process models that can be implemented directly within the Generic Disposal System Analysis (GDSA) platform or that can contribute to the safety case in some manner such as building confidence, providing further insight into the processes being modeled, establishing better constraints on barrier performance, etc.

More Details
Results 1–25 of 164
Results 1–25 of 164