Publications

Results 1–25 of 194

Search results

Jump to search filters

Concentration fluctuations and flammability of cryo-compressed hydrogen and methane jets

Fuel

Yao, Chenyi; Ba, Qingxin; Hecht, Ethan S.; Christopher, David M.; Li, Xuefang

Compressed hydrogen stored at cryogenic temperatures has a much higher density than room-temperature storage, which enables large-scale hydrogen storage and transport. An understanding of the release of cryogenic hydrogen from pressurized vessels is needed to evaluate the risk and safety concerns with the use of this fuel. The present work extends the analysis of previous experimental studies that measured the gas concentrations of cryo-compressed hydrogen jets and methane jets using a laser Raman scattering diagnostic system. Since the Raman signals are very small, a denoising algorithm was applied to significantly reduce the noise to enable statistical analysis of the data. The transient features of the turbulent jets were characterized by their concentration intermittencies and probability density functions (PDFs). A two-part PDF was developed to predict the bimodal features of the jet concentration distributions. Then, the flammability factors of the cryogenic jets were calculated based on the intermittency and the PDF.

More Details

Hydrogen Plus Other Alternative Fuels Risk Assessment Models (HyRAM+) Version 5.1 Technical Reference Manual

Ehrhart, Brian D.; Hecht, Ethan S.; Schroeder, Benjamin B.

The HyRAM+ software toolkit provides a basis for conducting quantitative risk assessment and consequence modeling for hydrogen, natural gas, and autogas systems. HyRAM+ is designed to facilitate the use of state-of-the-art models to conduct robust, repeatable assessments of safety, hazards, and risk. HyRAM+ integrates deterministic and probabilistic models for quantifying leak sizes and rates, predicting physical effects, characterizing hazards (thermal effects from jet fires, overpressure effects from delayed ignition), and assessing impacts on people. HyRAM+ is developed at Sandia National Laboratories to support the development and revision of national and international codes and standards, and to provide developed models in a publicly-accessible toolkit usable by all stakeholders. This document provides a description of the methodology and models contained in HyRAM+ version 5.1. The most significant changes for HyRAM+ version 5.1 from HyRAM+ version 5.0 are updated default leak frequency values for propane, new default component counts for different fuel types, and an improved fuel specification view in the graphical user interface.

More Details

Physics model validation of propane and methane for Hydrogen Plus Other Alternative Fuels Risk Assessment Models (HyRAM+)

Process Safety and Environmental Protection

Guo, Qi; Hecht, Ethan S.; Blaylock, Myra L.; Shum, Jessica G.; Jordan, Cyrus

HyRAM+ is a toolkit that includes fast-running models for the unconstrained (i.e., no wall interactions) dispersion and flames for non-premixed fuels. The models were developed for use with hydrogen, but the toolkit was expanded to include propane and methane in a recent release. In this work we validate the dispersion and flame models for these additional fuels, based on reported literature data. The validation efforts spanned a range of release conditions, from subsonic to underexpanded jets and flames for a range of mass flow rates. In general, the dispersion model works well for both propane and methane although the width of the jet/plume is predicted to be wider than observed in some cases. The flame model tends to over-predict the induced buoyancy for low-momentum flames, while the radiative heat flux agrees with the experimental data reasonably well, for both fuels. The models could be improved but give acceptable predictions for propane and methane behavior for the purposes of risk assessment.

More Details

Liquid hydrogen storage system for heavy duty trucks: Configuration, performance, cost, and safety

International Journal of Hydrogen Energy

Ahluwalia, R.K.; Roh, H.S.; Peng, J.K.; Papadias, D.; Baird, Austin R.; Hecht, Ethan S.; Ehrhart, Brian D.; Muna, Alice B.; Ronevich, Joseph A.; Houchins, C.; Killingsworth, N.J.; Aceves, S.M.

We investigate the potential of liquid hydrogen storage (LH2) on-board Class-8 heavy duty trucks to resolve many of the range, weight, volume, refueling time and cost issues associated with 350 or 700-bar compressed H2 storage in Type-3 or Type-4 composite tanks. We present and discuss conceptual storage system configurations capable of supplying H2 to fuel cells at 5-bar with or without on-board LH2 pumps. Structural aspects of storing LH2 in double walled, vacuum insulated, and low-pressure Type-1 tanks are investigated. Structural materials and insulation methods are discussed for service at cryogenic temperatures and mitigation of heat leak to prevent LH2 boil-off. Failure modes of the liner and shell are identified and analyzed using the regulatory codes and detailed finite element (FE) methods. The conceptual systems are subjected to a failure modes and effects analysis (FMEA) and a safety, codes, and standards (SCS) review to rank failures and identify safety gaps. The results indicate that the conceptual systems can reach 19.6% useable gravimetric capacity, 40.9 g-H2/L useable volumetric capacity and $174–183/kg-H2 cost (2016 USD) when manufactured 100,000 systems annually.

More Details

Simulations for Planning of Liquid Hydrogen Spill Test

Energies

Blaylock, Myra L.; Hecht, Ethan S.; Mangala Gitushi, Kevin

In order to better understand the complex pooling and vaporization of a liquid hydrogen spill, Sandia National Laboratories is conducting a highly instrumented, controlled experiment inside their Shock Tube Facility. Simulations were run before the experiment to help with the planning of experimental conditions, including sensor placement and cross wind velocity. This paper describes the modeling used in this planning process and its main conclusions. Sierra Suite’s Fuego, an in-house computational fluid dynamics code, was used to simulate a RANS model of a liquid hydrogen spill with five crosswind velocities: 0.45, 0.89, 1.34, 1.79, and 2.24 m/s. Two pool sizes were considered: a diameter of 0.85 m and a diameter of 1.7. A grid resolution study was completed on the smaller pool size with a 1.34 m/s crosswind. A comparison of the length and height of the plume of flammable hydrogen vaporizing from the pool shows that the plume becomes longer and remains closer to the ground with increasing wind speed. The plume reaches the top of the facility only in the 0.45 m/s case. From these results, we concluded that it will be best for the spacing and location of the concentration sensors to be reconfigured for each wind speed during the experiment.

More Details

Technical Justifications for Liquid Hydrogen Exposure Distances

Ehrhart, Brian D.; Hecht, Ethan S.; Schroeder, Benjamin B.

The previous separation distances in the National Fire Protection Association (NFPA) Hydrogen Technologies Code (NFPA 2, 2020 Edition) for bulk liquid hydrogen systems lack a well-documented basis and can be onerous. This report describes the technical justifications for revisions of the bulk liquid hydrogen storage setback distances in NFPA 2, 2023 Edition. Distances are calculated based on a leak area that is 5% of the nominal pipe flow area. Models from the open source HyRAM+ toolkit are used to justify the leak size as well as calculate consequence-based separation distances from that leak size. Validation and verification of the numerical models is provided, as well as justification for the harm criteria used for the determination of the setback distances for each exposure type. This report also reviews mitigations that could result in setback distance reduction. The resulting updates to the liquid hydrogen separation distances are well-documented, retrievable, repeatable, revisable, independently verified, and use experimental results to verify the models.

More Details

Quantifying the effect of CO2 gasification on pulverized coal char oxy-fuel combustion

Proceedings of the Combustion Institute

Shaddix, Christopher R.; Hecht, Ethan S.; Gonzalo-Tirado, Cristina; Haynes, Brian S.

Previous research has provided strong evidence that CO2 and H2O gasification reactions can provide non-negligible contributions to the consumption rates of pulverized coal (pc) char during combustion, particularly in oxy-fuel environments. Fully quantifying the contribution of these gasification reactions has proven to be difficult, due to the dearth of knowledge of gasification rates at the elevated particle temperatures associated with typical pc char combustion processes, as well as the complex interaction of oxidation and gasification reactions. Gasification reactions tend to become more important at higher char particle temperatures (because of their high activation energy) and they tend to reduce pc oxidation due to their endothermicity (i.e. cooling effect). The work reported here attempts to quantify the influence of the gasification reaction of CO2 in a rigorous manner by combining experimental measurements of the particle temperatures and consumption rates of size-classified pc char particles in tailored oxy-fuel environments with simulations from a detailed reacting porous particle model. The results demonstrate that a specific gasification reaction rate relative to the oxidation rate (within an accuracy of approximately +/- 20% of the pre-exponential value), is consistent with the experimentally measured char particle temperatures and burnout rates in oxy-fuel combustion environments. Conversely, the results also show, in agreement with past calculations, that it is extremely difficult to construct a set of kinetics that does not substantially overpredict particle temperature increase in strongly oxygen-enriched N2 environments. This latter result is believed to result from deficiencies in standard oxidation mechanisms that fail to account for falloff in char oxidation rates at high temperatures.

More Details

Hydrogen Plus Other Alternative Fuels Risk Assessment Models (HyRAM+) Version 5.0 Technical Reference Manual

Ehrhart, Brian D.; Hecht, Ethan S.

The HyRAM+ software toolkit provides a basis for conducting quantitative risk assessment and consequence modeling for hydrogen, natural gas, and autogas systems. HyRAM+ is designed to facilitate the use of state-of-the-art models to conduct robust, repeatable assessments of safety, hazards, and risk. HyRAM+ integrates deterministic and probabilistic models for quantifying leak sizes and rates, predicting physical effects, characterizing hazards (thermal effects from jet fires, overpressure effects from delayed ignition), and assessing impacts on people. HyRAM+ is developed at Sandia National Laboratories to support the development and revision of national and international codes and standards, and to provide developed models in a publicly-accessible toolkit usable by all stakeholders. This document provides a description of the methodology and models contained in HyRAM+ version 5.0. The most significant change for HyRAM+ version 5.0 from HyRAM+ version 4.1 is the ability to model blends of different fuels. HyRAM+ was previously only suitable for use with hydrogen, methane, or propane, with users having the ability to use methane as a proxy for natural gas and propane as a proxy for autogas/liquefied petroleum gas. In version 5.0, real natural gas or autogas compositions can be modeled as the fuel, or even blends of natural gas with hydrogen. These blends can be used in the standalone physics models, but not yet in the quantitative risk assessment mode of HyRAM+.

More Details

Quantifying the effect of CO2 gasification on pulverized coal char oxy-fuel combustion

Proceedings of the Combustion Institute

Shaddix, Christopher R.; Hecht, Ethan S.; Haynes, Brian S.

Previous research has provided strong evidence that CO2 and H2O gasification reactions can provide non-negligible contributions to the consumption rates of pulverized coal (pc) char during combustion, particularly in oxy-fuel environments. Fully quantifying the contribution of these gasification reactions has proven to be difficult, due to the dearth of knowledge of gasification rates at the elevated particle temperatures associated with typical pc char combustion processes, as well as the complex interaction of oxidation and gasification reactions. Gasification reactions tend to become more important at higher char particle temperatures (because of their high activation energy) and they tend to reduce pc oxidation due to their endothermicity (i.e. cooling effect). The work reported here attempts to quantify the influence of the gasification reaction of CO2 in a rigorous manner by combining experimental measurements of the particle temperatures and consumption rates of size-classified pc char particles in tailored oxy-fuel environments with simulations from a detailed reacting porous particle model. The results demonstrate that a specific gasification reaction rate relative to the oxidation rate (within an accuracy of approximately +/- 20% of the pre-exponential value), is consistent with the experimentally measured char particle temperatures and burnout rates in oxy-fuel combustion environments. Conversely, the results also show, in agreement with past calculations, that it is extremely difficult to construct a set of kinetics that does not substantially overpredict particle temperature increase in strongly oxygen-enriched N2 environments. This latter result is believed to result from deficiencies in standard oxidation mechanisms that fail to account for falloff in char oxidation rates at high temperatures.

More Details

Liquid Hydrogen Heavy-Duty Vehicle Safety Review and Refueling Facility Design

Baird, Austin R.; Hecht, Ethan S.; Ehrhart, Brian D.; Muna, Alice B.

Liquid hydrogen (LH2) used as a fuel onboard a heavy-duty vehicle can result in increased storage capacity and faster refueling relative to compressed gas. However, there are concerns about hydrogen losses from boil-off, potential safety issues, gaps in codes and standards for cryogenic hydrogen fuel, and technical challenges with LH2 systems for widespread transportation applications. A failure modes and effects analysis (FMEA), a safety codes and standards review, and a design review of the onboard liquid hydrogen system for a heavy-duty vehicle identified some of these potential safety issues and gaps in the codes and standards. The FMEA identified some medium and low risk failure points of the conceptual design, and the design review identified how carefully pressure relief needs to be considered for LH2 systems. In addition, a conceptual design for a LH2 refueling station was developed. Rough capital costs for the refueling station design were $\$1 million$ and the layout occupied approximately 13,000 ft2. These results can be used to inform future designs and analyses for LH2 heavy-duty vehicles.

More Details

Hydrogen Plus Other Alternative Fuels Risk Assessment Models (HyRAM+) Version 4.1 Technical Reference Manual

Ehrhart, Brian D.; Hecht, Ethan S.

The HyRAM+ software toolkit provides a basis for conducting quantitative risk assessment and consequence modeling for hydrogen, methane, and propane systems. HyRAM+ is designed to facilitate the use of state-of-the-art models to conduct robust, repeatable assessments of safety, hazards, and risk. HyRAM+ integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, characterizing hazards (thermal effects from jet fires, overpressure effects from delayed ignition), and assessing impacts on people. HyRAM+ is developed at Sandia National Laboratories to support the development and revision of national and international codes and standards, and to provide developed models in a publicly-accessible toolkit usable by all stakeholders. This document provides a description of the methodology and models contained in HyRAM+ version 4.1. The two most significant changes for HyRAM+ version 4.1 from HyRAM+ version 4.0 are direct incorporation of unconfined overpressure into the QRA calculations and modification of the models for cryogenic liquid flow through an orifice. In QRA mode, the user no longer needs to input peak overpressure and impulse values that were calculated separately; rather, the unconfined overpressure is estimated for the given system inputs, leak size, and occupant location. The orifice flow model now solves for the maximum mass flux through the orifice at constant entropy while conserving energy, which does not require a direct speed of sound calculation. This does not affect the mass flow for all-gaseous releases; the method results in the same speed of sound for choked flow. However, this method does result in a higher (and more realistic) mass flow rate for a given leak size for liquid releases than was previously calculated.

More Details

Computational Risk Analysis of Propane Releases in Maintenance Facilities

Blaylock, Myra L.; Hecht, Ethan S.; Jordan, Cyrus J.

Liquefied petroleum gas (LPG) is a viable, cleaner alternative to traditional diesel fuel used in busses and other heavy-duty vehicles and could play a role in helping the US meet its lower emission goals. While the LPG industry has focused efforts on developing vehicles and fueling infrastructure, we must also establish safe parameters for maintenance facilities which are servicing LPG fueled vehicles. Current safety standards aid in the design of maintenance facilities, but additional quantitative analysis is needed to prove safeguards are adequate and suggest improvements where needed. In this report we aim to quantify the amount of flammable mass associated with propane releases from vehicle mounted fuel vessels within enclosed garages. Furthermore, we seek to qualify harm mitigation with variable ventilations and facility layout. To accomplish this we leverage validated computational resources at Sandia National Laboratories to simulate various release scenarios representative of real world vehicles and maintenance facilities. Flow solvers are used to predict the dynamics of fuel systems as well as the evolution of propane during release events. From our simulated results we observe that both inflow and outflow ventilation locations play a critical role in reducing flammable cloud size and potential overpressure values during a possible combustion event.

More Details

Benchmark Comparison of HyRAM and ALDEA Software for Hydrogen Release Behavior

Glover, Austin M.; Ehrhart, Brian D.; Muna, Alice B.; Hecht, Ethan S.; Bernard, Laurence; Houssin, Deborah; Jallais, Simon; Vyazmina, Elena

There are several different calculation approaches and tools that can be used to evaluate the risk of hydrogen energy applications. A comparative study of Air Liquide’s ALDEA (Air Liquide Dispersion and Explosion Assessment) tools suite and Sandia’s HyRAM (Hydrogen Risk Assessment Models) toolkit has been conducted. The purpose of this study was to understand and evaluate the differences between the two calculation approaches, and identify areas for model improvements. There were several scenarios examined in this effort regarding hydrogen release dynamics. These scenarios include free jet release cases at varying pressures, vessel blowdown, and hydrogen build-up scenarios with and without ventilation. For each scenario, the input and output of the HyRAM calculations are documented, along with a comparison to the ALDEA results. Generally, the results from the two different tools were reasonably aligned. However, there were fundamental differences in evaluation methodology and functional limitations in HyRAM that caused discrepancies in some calculations.

More Details

Hydrogen Plus Other Alternative Fuels Risk Assessment Models (HyRAM+) (Technical Reference Manual V.4)

Hecht, Ethan S.; Ehrhart, Brian D.

The HyRAM+ software toolkit provides a basis for conducting quantitative risk assessment and consequence modeling for hydrogen, methane, and propane infrastructure and transportation systems. HyRAM+ is designed to facilitate the use of state-of-the-art science and engineering models to conduct robust, repeatable assessments of safety, hazards, and risk. HyRAM+ includes generic probabilities for equipment failures, probabilistic models for the impact of heat flux on humans and structures, and experimentally validated first-order models of release and flame physics. HyRAM+ integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, and characterizing hazards (thermal effects from jet fires, overpressure effects from delayed ignition), and assessing impact on people and structures. HyRAM+ is developed at Sandia National Laboratories to support the development and revision of national and international codes and standards. HyRAM+ is a research software in active development and thus the models and data may change. This report will be updated at appropriate developmental intervals. This document provides a description of the methodology and models contained in HyRAM+ version 4.0. The most significant change for HyRAM+ version 4.0 from HyRAM version 3.1 is the incorporation of other alternative fuels, namely methane (as a proxy for natural gas) and propane into the toolkit. This change necessitated significant changes to the installable graphical user interface as well as changes to the back-end Python models. A second major change is the inclusion of physics models for the overpressure associated with the delayed ignition of an unconfined jet/plume of flammable gas.

More Details

Influence of Non-Equilibrium Conditions on Liquid Hydrogen Storage Tank Behavior [Slides]

Bran Anleu, Gabriela A.; Hecht, Ethan S.; Machalek, Derek M.

Understanding liquid hydrogen tank fluid dynamics is key for modeling liquid hydrogen systems. The tank is the source for nearly all liquid hydrogen systems. Accurate flow modeling out of the tank is needed to predict flows through downstream components. Tank contains liquid and gas that may not be at equilibrium. Questions to be addressed are: Does heat and mass transfer between liquid and vapor affect the flow rate? Is boiling an important consideration? For what conditions is a pressure relief valve (PRV) sufficient to relieve pressure and when is the burst disc needed?

More Details
Results 1–25 of 194
Results 1–25 of 194