A reduction in wake effects in large wind farms through wake-aware control has considerable potential to improve farm efficiency. This work examines the success of several emerging, empirically derived control methods that modify wind turbine wakes (i.e., the pulse method, helix method, and related methods) based on Strouhal numbers on the (Formula presented.). Drawing on previous work in the literature for jet and bluff-body flows, the analyses leverage the normal-mode representation of wake instabilities to characterize the large-scale wake meandering observed in actuated wakes. Idealized large-eddy simulations (LES) using an actuator-line representation of the turbine blades indicate that the (Formula presented.) and (Formula presented.) modes, which correspond to the pulse and helix forcing strategies, respectively, have faster initial growth rates than higher-order modes, suggesting these lower-order modes are more appropriate for wake control. Exciting these lower-order modes with periodic pitching of the blades produces increased modal growth, higher entrainment into the wake, and faster wake recovery. Modal energy gain and the entrainment rate both increase with streamwise distance from the rotor until the intermediate wake. This suggests that the wake meandering dynamics, which share close ties with the relatively well-characterized meandering dynamics in jet and bluff-body flows, are an essential component of the success of wind turbine wake control methods. A spatial linear stability analysis is also performed on the wake flows and yields insights on the modal evolution. In the context of the normal-mode representation of wake instabilities, these findings represent the first literature examining the characteristics of the wake meandering stemming from intentional Strouhal-timed wake actuation, and they help guide the ongoing work to understand the fluid-dynamic origins of the success of the pulse, helix, and related methods.
Multiple rotors on single structures have long been proposed to increase wind turbine energy capture with no increase in rotor size, but at the cost of additional mechanical complexity in the yaw and tower designs. Standard turbines on their own very-closely-spaced towers avoid these disadvantages but create a significant disadvantage; for some wind directions the wake turbulence of a rotor enters the swept area of a very close downwind rotor causing low output, fatigue stress, and changes in wake recovery. Knowing how the performance of pairs of closely spaced rotors varies with wind direction is essential to design a layout that maximizes the useful directions and minimizes the losses and stress at other directions. In the current work, the high-fidelity large-eddy simulation (LES) code Exa-Wind/Nalu-Wind is used to simulate the wake interactions from paired-rotor configurations in a neutrally stratified atmospheric boundary layer to investigate performance and feasibility. Each rotor pair consists of two Vestas V27 turbines with hub-to-hub separation distances of 1.5 rotor diameters. The on-design wind direction results are consistent with previous literature. For an off-design wind direction of 26.6°, results indicate little change in power and far-wake recovery relative to the on-design case. At a direction of 45.0°, significant rotor-wake interactions produce an increase in power but also in far-wake velocity deficit and turbulence intensity. A severely off-design case is also considered.
A large-scale numerical computation of five wind farms was performed as a part of the American WAKE experimeNt (AWAKEN). This high-fidelity computation used the ExaWind/AMR-Wind LES solver to simulate a 100 km × 100 km domain containing 541 turbines under unstable atmospheric conditions matching previous measurements. The turbines were represented by Joukowski and OpenFAST coupled actuator disk models. Results of this qualitative comparison illustrate the interactions of wind farms with large-scale ABL structures in the flow, as well as the extent of downstream wake penetration in the flow and blockage effects around wind farms.
Multiple rotors on single structures have long been proposed to increase wind turbine energy capture with no increase in rotor size, but at the cost of additional mechanical complexity in the yaw and tower designs. Standard turbines on their own very-closely-spaced towers avoid these disadvantages but create a significant disadvantage; for some wind directions the wake turbulence of a rotor enters the swept area of a very close downwind rotor causing low output, fatigue stress, and changes in wake recovery. Knowing how the performance of pairs of closely spaced rotors varies with wind direction is essential to design a layout that maximizes the useful directions and minimizes the losses and stress at other directions. In the current work, the high-fidelity large-eddy simulation (LES) code Exa-Wind/Nalu-Wind is used to simulate the wake interactions from paired-rotor configurations in a neutrally stratified atmospheric boundary layer to investigate performance and feasibility. Each rotor pair consists of two Vestas V27 turbines with hub-to-hub separation distances of 1.5 rotor diameters. The on-design wind direction results are consistent with previous literature. For an off-design wind direction of 26.6°, results indicate little change in power and far-wake recovery relative to the on-design case. At a direction of 45.0°, significant rotor-wake interactions produce an increase in power but also in far-wake velocity deficit and turbulence intensity. A severely off-design case is also considered.
Turbine generator power from simulations using Actuator Line Models and Actuator Disk Models with a Filtered Lifting Line Correction are compared to field data of a V27 turbine. Preliminary results of the wake characteristics are also presented. Turbine quantities of interest from traditional ALM and ADM with the Gaussian kernel (ϵ) set at the optimum value for matching power production and that resolve the kernel at all mesh sizes are also presented. The atmospheric boundary layer is simulated using Nalu-Wind, a Large Eddy Simulation code which is part of the ExaWind code suite. The effect of mesh resolution on quantities of interest is also examined.
In this study we performed detailed comparisons of numerical computations of single turbine wakes with measured data under neutral and stable atmospheric stability conditions. LES of the ABL inflow and turbine wakes are carried out using the ExaWind/Nalu-Wind simulation codes and compared with the equivalent measurements from the SWiFT research facility at wind speeds of 8.7 m/s and 4.8 m/s. The computed ABL inflow profiles and spectra showed good agreement with measured data in both stratification conditions, and the simulated turbine power and rotor speed also agreed with the measured turbine performance. A comparison of the downstream wake deficit profiles and turbulence distributions with lidar observations also showed that the LES computations generally captured the wake evolution in both neutral and stable conditions, with some possible discrepancies due to uncertainty around the turbine thrust and yaw settings. Finally, an examination of the downstream turbulence spectra showed that the peak frequency of the wake added turbulence corresponds to the characteristic wake shedding frequency, and we show that the turbulent integral lengthscale in the wake region also decreases significantly due to the presence of smaller turbulent features.
The complexity and associated uncertainties involved with atmospheric-turbine-wake interactions produce challenges for accurate wind farm predictions of generator power and other important quantities of interest (QoIs), even with state-of-the-art high-fidelity atmospheric and turbine models. A comprehensive computational study was undertaken with consideration of simulation methodology, parameter selection, and mesh refinement on atmospheric, turbine, and wake QoIs to identify capability gaps in the validation process. For neutral atmospheric boundary layer conditions, the massively parallel large eddy simulation (LES) code Nalu-Wind was used to produce high-fidelity computations for experimental validation using high-quality meteorological, turbine, and wake measurement data collected at the Department of Energy/Sandia National Laboratories Scaled Wind Farm Technology (SWiFT) facility located at Texas Tech University's National Wind Institute. The wake analysis showed the simulated lidar model implemented in Nalu-Wind was successful at capturing wake profile trends observed in the experimental lidar data.