Publications

Results 1–25 of 109
Skip to search filters

Microstructure-Sensitive Uncertainty Quantification for Crystal Plasticity Finite Element Constitutive Models Using Stochastic Collocation Methods

Frontiers in Materials

Tran, Anh; Wildey, Tim; Lim, Hojun L.

Uncertainty quantification (UQ) plays a major role in verification and validation for computational engineering models and simulations, and establishes trust in the predictive capability of computational models. In the materials science and engineering context, where the process-structure-property-performance linkage is well known to be the only road mapping from manufacturing to engineering performance, numerous integrated computational materials engineering (ICME) models have been developed across a wide spectrum of length-scales and time-scales to relieve the burden of resource-intensive experiments. Within the structure-property linkage, crystal plasticity finite element method (CPFEM) models have been widely used since they are one of a few ICME toolboxes that allows numerical predictions, providing the bridge from microstructure to materials properties and performances. Several constitutive models have been proposed in the last few decades to capture the mechanics and plasticity behavior of materials. While some UQ studies have been performed, the robustness and uncertainty of these constitutive models have not been rigorously established. In this work, we apply a stochastic collocation (SC) method, which is mathematically rigorous and has been widely used in the field of UQ, to quantify the uncertainty of three most commonly used constitutive models in CPFEM, namely phenomenological models (with and without twinning), and dislocation-density-based constitutive models, for three different types of crystal structures, namely face-centered cubic (fcc) copper (Cu), body-centered cubic (bcc) tungsten (W), and hexagonal close packing (hcp) magnesium (Mg). Our numerical results not only quantify the uncertainty of these constitutive models in stress-strain curve, but also analyze the global sensitivity of the underlying constitutive parameters with respect to the initial yield behavior, which may be helpful for robust constitutive model calibration works in the future.

More Details

Characterization of Tri-lab β-Tin (Sn)

Lim, Hojun L.; Casias, Zachary C.; Carroll, Jay D.; Battaile, Corbett C.; Lane, James M.; Fensin, Saryu J.

This report documents details of the microstructure and mechanical properties of -tin (Sn), that is used in the Tri-lab (Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL)) collaboration project on Multi-phase Tin Strength. We report microstructural features detailing the crystallographic texture and grain morphology of as-received -tin from electron back scatter diffraction (EBSD). Temperature and strain rate dependent mechanical behavior was investigated by multiple compression tests at temperatures of 200K to 400K and strain rates of 0.0001 /s to 100 /s. Tri-lab tin showed significant temperature and strain rate dependent strength with no significant plastic anisotropy. A sample to sample material variation was observed from duplicate compression tests and texture measurements. Compression data was used to calibrate model parameters for temperature and rate dependent strength models, Johnson-Cook (JC), Zerilli-Armstrong (ZA) and Preston-Tonks-Wallace (PTW) strength models.

More Details

Low friction in bcc metals via grain boundary sliding

Physical Review Materials

Hinkle, Adam R.; Curry, John C.; Lim, Hojun L.; Nation, Brendan L.; Jones, Morgan J.; Wellington-Johnson, John A.; Lu, Ping L.; Argibay, Nicolas A.; Chandross, M.

Low friction is demonstrated with pure polycrystalline tantalum sliding contacts in both molecular dynamics simulations and ultrahigh vacuum experiments. This phenomenon is shown to be correlated with deformation occurring primarily through grain boundary sliding and can be explained using a recently developed predictive model for the shear strength of metals. Specifically, low friction is associated with grain sizes at the interface being smaller than a critical, material-dependent value, where a crossover from dislocation mediated plasticity to grain-boundary sliding occurs. Low friction is therefore associated with inverse Hall-Petch behavior and softening of the interface. Direct quantitative comparisons between experiments and atomistic calculations are used to illustrate the accuracy of the predictions.

More Details

Three-Dimensional Additively Manufactured Microstructures and Their Mechanical Properties

JOM

Rodgers, Theron R.; Lim, Hojun L.; Brown, Judith A.

Metal additive manufacturing (AM) allows for the freeform creation of complex parts. However, AM microstructures are highly sensitive to the process parameters used. Resulting microstructures vary significantly from typical metal alloys in grain morphology distributions, defect populations and crystallographic texture. AM microstructures are often anisotropic and possess three-dimensional features. These microstructural features determine the mechanical properties of AM parts. Here, we reproduce three “canonical” AM microstructures from the literature and investigate their mechanical responses. Stochastic volume elements are generated with a kinetic Monte Carlo process simulation. A crystal plasticity-finite element model is then used to simulate plastic deformation of the AM microstructures and a reference equiaxed microstructure. Results demonstrate that AM microstructures possess significant variability in strength and plastic anisotropy compared with conventional equiaxed microstructures.

More Details

Investigating mesh sensitivity and polycrystalline RVEs in crystal plasticity finite element simulations

International Journal of Plasticity

Lim, Hojun L.; Battaile, Corbett C.; Bishop, Joseph E.; Foulk, James W.

Crystal plasticity-finite element method (CP-FEM) is now widely used to understand the mechanical response of polycrystalline materials. However, quantitative mesh convergence tests and verification of the necessary size of polycrystalline representative volume elements (RVE) are often overlooked in CP-FEM simulations. Mesh convergence studies in CP-FEM models are more challenging compared to conventional finite element analysis (FEA) as they are not only computationally expensive but also require explicit discretization of individual grains using many finite elements. Resolving each grains within a polycrystalline domain complicates mesh convergence study since mesh convergence is strongly affected by the initial crystal orientations of grains and local loading conditions. In this work, large-scale CP-FEM simulations of single crystals and polycrystals are conducted to study mesh sensitivity in CP-FEM models. Various factors that may affect the mesh convergence in CP-FEM simulations, such as initial textures, hardening models and boundary conditions are investigated. In addition, the total number of grains required to obtain adequate RVE is investigated. This work provides a list of guidelines for mesh convergence and RVE generation in CP-FEM modeling.

More Details

Relating microstructure to defect behavior in AA6061 using a combined computational and multiscale electron microscopy approach

Acta Materialia

Yoo, Yung S.; Lim, Hojun L.; Emery, John M.; Kacher, Josh

In this study, a multiscale electron microscopy-based approach is applied to understanding how different aspects of the microstructure in a notched AA6061-T6, including grain boundaries, triple junctions, and intermetallic particles, promote localized dislocation accumulation as a function of applied tensile strain and depth from the sample surface. Experimental measurements and crystal plasticity simulations of dislocation distributions as a function of distance from specified microstructural features both showed preferential dislocation accumulation near intermetallic particles relative to grain boundaries and triple junctions. High resolution electron backscatter diffraction and site-specific transmission electron microscopy characterization showed that high levels of dislocation accumulation near intermetallic particles led to the development of an ultrafine sub-grain microstructure, indicative of a much higher level of local plasticity than predicted from the coarser measurements and simulations. In addition, high resolution measurements in front of a crack tip suggested a compounding influence of intermetallic particles and grain boundaries in dictating crack propagation pathways.

More Details

Reduced partitioning of plastic strain for strong and yet ductile precipitate-strengthened alloys

Scientific Reports

Jones, R.D.; Di Gioacchino, F.; Lim, Hojun L.; Edwards, T.E.J.; Schwalbe, C.; Battaile, Corbett C.; Clegg, W.J.

When a material that contains precipitates is deformed, the precipitates and the matrix may strain plastically by different amounts causing stresses to build up at the precipitate-matrix interfaces. If premature failure is to be avoided, it is therefore essential to reduce the difference in the plastic strain between the two phases. Here, we conduct nanoscale digital image correlation to measure a new variable that quantifies this plastic strain difference and show how its value can be used to estimate the associated interfacial stresses, which are found to be approximately three times greater in an Fe-Ni2AlTi steel than in the more ductile Ni-based superalloy CMSX-4®. It is then demonstrated that decreasing these stresses significantly improves the ability of the Fe-Ni2AlTi microstructure to deform under tensile loads without loss in strength.

More Details

Anisotropy and strain localization in dynamic impact experiments of tantalum single crystals

Scientific Reports

Lim, Hojun L.; Carroll, Jay D.; Battaile, Corbett C.; Chen, Shuh R.; Moore, Alexander M.; Lane, J.M.

Deformation mechanisms in bcc metals, especially in dynamic regimes, show unusual complexity, which complicates their use in high-reliability applications. Here, we employ novel, high-velocity cylinder impact experiments to explore plastic anisotropy in single crystal specimens under high-rate loading. The bcc tantalum single crystals exhibit unusually high deformation localization and strong plastic anisotropy when compared to polycrystalline samples. Several impact orientations - [100], [110], [111] and [149] -Are characterized over a range of impact velocities to examine orientation-dependent mechanical behavior versus strain rate. Moreover, the anisotropy and localized plastic strain seen in the recovered cylinders exhibit strong axial symmetries which differed according to lattice orientation. Two-, three-, and four-fold symmetries are observed. We propose a simple crystallographic argument, based on the Schmid law, to understand the observed symmetries. These tests are the first to explore the role of single-crystal orientation in Taylor impact tests and they clearly demonstrate the importance of crystallography in high strain rate and temperature deformation regimes. These results provide critical data to allow dramatically improved high-rate crystal plasticity models and will spur renewed interest in the role of crystallography to deformation in dynamics regimes.

More Details

Verification of experimental dynamic strength methods with atomistic ramp-release simulations

Physical Review Materials

Moore, Alexander M.; Brown, Justin L.; Lim, Hojun L.; Lane, J.M.

Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressure gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. These simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.

More Details
Results 1–25 of 109
Results 1–25 of 109