A series of drained and undrained water-saturated constant mean-stress tests were performed to investigate the strength, elasticity, and poroelastic response of a water-saturated high porosity nonwelded tuff. Drained strengths are found to increase with increasing effective confining pressures. Elastic moduli increase with increasing mean stress. Undrained strengths are small due to development of high pore pressures that generate low effective confining pressures. Skempton’s values are pressure dependent and appear to reflect the onset of inelastic deformation. Permeabilities decrease after deformation from ∼ 10–14 to ∼ 10–16 m2 and are a function of the applied confining pressure. Deformation is dominated by pore collapse, compaction, and intense microfracturing, with the undrained tests favoring microfracture-dominant deformation and the drained tests favoring compaction-dominant deformation. These property determinations and observations are used to develop/parameterize physics-based models for underground explosives testing.
This data documentation report describes geologic and hydrologic laboratory analysis and data collected in support of site characterization of the Physical Experiment 1 (PE1) testbed, Aqueduct Mesa, Nevada. The documentation includes a summary of laboratory tests performed, discussion of sample selection for assessing heterogeneity of various testbed properties, methods, and results per data type.
The goal of this work is to provide a database of quality-checked seismic parameters that can be integrated with the Geologic Framework Model (GFM) for the LYNM-PE1 (Low Yield Nuclear Monitoring – Physical Experiment 1) testbed. We integrated data from geophysical borehole logs, tabletop measurements on collected core, and laboratory measurements. We reviewed for internal consistency among each measurement type, documented the caveats of measurement conditions, and integrated lithologic logs to check the validity of outlier values. The resulting consolidated parameter tables can be used as inputs for modeling and analysis codes and are designed to interface with the GFM, which is being actively developed.
Geogenic gases often reside in intergranular pore space, fluid inclusions, and within mineral grains. In particular, helium-4 (4He) is generated by alpha decay of uranium and thorium in rocks. The emitted 4He nuclei can be trapped in the rock matrix or in fluid inclusions. Recent work has shown that releases of helium occur during plastic deformation of crustal rocks above atmospheric concentrations that are detectable in the field. However, it is unclear how rock type and deformation modalities affect the cumulative gas released. This work seeks to address how different deformation modalities observed in several rock types affect release of helium. Axial compression tests with granite, rhyolite, tuff, dolostone, and sandstone - under vacuum conditions - were conducted to measure the transient release of helium from each sample during crushing. It was found that, when crushed up to 97500 N, each rock type released helium at a rate quantifiable using a helium mass spectrometer leak detector. For plutonic rock like granite, helium flow rate spikes with the application of force as the samples elastically deform until fracture, then decays slowly until grain breakdown comminution begins to occur. Both the rhyolite and tuff do not experience such large spikes in helium flow rate, with the rhyolites fracturing at much lower force and the tuffs compacting instead of fracturing due to their high porosity. Both rhyolite and tuff instead experience a lesser but steady helium release as they are crushed. The cumulative helium release for the volcanic tuffs varies as much as two orders of magnitude but is fairly consistent for the denser rhyolite and granite tested. The results indicate that there is a large degassing of helium as rocks are elastically and inelastically deformed prior to fracturing. For more porous and less brittle rocks, the cumulative release will depend more on the degree of deformation applied. These results are compared with known U/Th radioisotopes in the rocks to relate the trapped helium as either produced in the rock or from secondary migration of 4He.
Human activities involving subsurface reservoirs—resource extraction, carbon and nuclear waste storage—alter thermal, mechanical, and chemical steady-state conditions in these systems. Because these systems exist at lithostatic pressures, even minor chemical changes can cause chemically assisted deformation. Therefore, understanding how chemical effects control geomechanical properties is critical to optimizing engineering activities. The grand challenge in predicting the effect of chemical processes on mechanical properties lays in the fact that these phenomena take place at molecular scales, while they manifest all the way to reservoir scales. To address this fundamental challenge, we investigated chemical effects on deformation in model and real systems spanning molecular- to centimeter scales. We used theory, experiment, molecular dynamics simulation, and statistical analysis to (1) identify the effect of simple reactions, such as hydrolysis, on molecular structures in interfacial regions of stressed geomaterials; (2) quantify chemical effects on the bulk mechanical properties, fracture and displacement for granular rocks and single crystals; (3) develop initial understanding of universal scaling for individual displacement events in layered geomaterials; and (4) develop analytic approximations for the single-chain mechanical response utilizing asymptotically correct statistical thermodynamic theory. Taken together, these findings advance the challenging field of chemo-mechanics.
The Source Physics Experiment (SPE) is a long-term NNSA research and development effort designed to improve nonproliferation verification and monitoring capabilities. The overarching goals of the SPE program are to improve understanding of prompt signals and physical signatures that develop from underground chemical explosions and associated modeling capabilities. Our work focuses on a primary factor controlling chemical explosion induced signals and signatures: the material properties of the rocks in which the chemical explosion takes place. This document reports on material property determinations of legacy core USGS Test Well F and outcrop analogs for the subsurface stratigraphy for the third phase of SPE in the Rock Valley (RV) area of the Nevada National Security Site (NNSS). The objective of this work is to establish a baseline set of lithologic descriptions and material properties expected prior to observatory borehole drilling in support of the SPE-RVDC (Rock Valley Direct Comparison) experiment. We determine for each rock type the compressional failure envelope, elastic properties as a function of stress (bulk modulus versus mean stress, shear modulus versus shear stress, Young’s modulus versus axial stress and Poisson’s ratio versus axial stress), indirect tensile strength, and porosity. Geologic characterization, both at the core-scale and microscale, provides context for using the data in modeling efforts and to inform interpretations for the material properties testing.
Detection and verification of underground nuclear explosions (UNEs) can be improved with a better understanding of the nature and extent of explosion-induced damage in rock and the effect of this damage on radionuclide migration. Much of the previous work in this area has focused on centimeterto meter-scale manifestations of damage, but to predict the effect of damage on permeability for radionuclide migration, observations at smaller scales are needed to determine deformation mechanisms. Based on studies of tectonic deformation in tuff, we expected that the heterogeneous tuff layers would manifest explosion-induced damage differently, with welded tuffs showing more fractures and nonwelded tuffs showing more deformation bands. In comparing post-UNE samples with lithologically matched pre-UNE equivalents, we observed damage in multiple lithologies of tuff through quantitative microfracture densities. We find that the texture (e.g., from deposition, welding, alteration, etc.) affects fracture densities, with stronger units fracturing more than weaker units. While we see no evidence of expected deformation bands in the nonwelded tuffs, we do observe, as expected, much larger microfracture densities at close range (<50 m) to the explosive source. We also observe a subtle increase in microfracture densities in post-UNE samples, relative to pre-UNE equivalents, in all lithologies and depths. The fractures that are interpreted to be UNE-induced are primarily transgranular and grain-boundary microfractures, with intragranular microfracture densities being largely similar to those of pre-UNE samples. This work has implications for models of explosion-induced damage and how that damage may affect flow pathways in the subsurface.
Prediction of flow, transport, and deformation in fractured and porous media is critical to improving our scientific understanding of coupled thermal-hydrological-mechanical processes related to subsurface energy storage and recovery, nonproliferation, and nuclear waste storage. Especially, earth rock response to changes in pressure and stress has remained a critically challenging task. In this work, we advance computational capabilities for coupled processes in fractured and porous media using Sandia Sierra Multiphysics software through verification and validation problems such as poro-elasticity, elasto-plasticity and thermo-poroelasticity. We apply Sierra software for geologic carbon storage, fluid injection/extraction, and enhanced geothermal systems. We also significantly improve machine learning approaches through latent space and self-supervised learning. Additionally, we develop new experimental technique for evaluating dynamics of compacted soils at an intermediate scale. Overall, this project will enable us to systematically measure and control the earth system response to changes in stress and pressure due to subsurface energy activities.
Two-phase fluid flow properties underlie quantitative prediction of water and gas movement, but constraining these properties typically requires multiple time-consuming laboratory methods. The estimation of two-phase flow properties (van Genuchten parameters, porosity, and intrinsic permeability) is illustrated in cores of vitric nonwelded volcanic tuff using Bayesian parameter estimation that fits numerical models to observations from spontaneous imbibition experiments. The uniqueness and correlation of the estimated parameters is explored using different modeling assumptions and subsets of the observed data. The resulting estimation process is sensitive to both moisture retention and relative permeability functions, thereby offering a comprehensive method for constraining both functions. The data collected during this relatively simple laboratory experiment, used in conjunction with a numerical model and a global optimizer, result in a viable approach for augmenting more traditional capillary pressure data obtained from hanging water column, membrane plate extractor, or mercury intrusion methods. This method may be useful when imbibition rather than drainage parameters are sought, when larger samples (e.g., including heterogeneity or fractures) need to be tested that cannot be accommodated in more traditional methods, or when in educational laboratory settings.
The main goal of this project was to create a state-of-the-art predictive capability that screens and identifies wellbores that are at the highest risk of catastrophic failure. This capability is critical to a host of subsurface applications, including gas storage, hydrocarbon extraction and storage, geothermal energy development, and waste disposal, which depend on seal integrity to meet U.S. energy demands in a safe and secure manner. In addition to the screening tool, this project also developed several other supporting capabilities to help understand fundamental processes involved in wellbore failure. This included novel experimental methods to characterize permeability and porosity evolution during compressive failure of cement, as well as methods and capabilities for understanding two-phase flow in damaged wellbore systems, and novel fracture-resistant cements made from recycled fibers.
Greater utilization of subsurface reservoirs perturbs in-situ chemical-mechanical conditions with wide ranging consequences from decreased performance to project failure. Understanding the chemical precursors to rock deformation is critical to reducing the risks of these activities. To address this need, we investigated the coupled flow-dissolution- precipitation-adsorption reactions involving calcite and environmentally-relevant solid phases. Experimentally, we quantified (1) stable isotope fractionation processes for strontium during calcite nucleation and growth, and during reactive fluid flow; (2) consolidation behavior of calcite assemblages in the common brines. Numerically, we quantified water weakening of calcite using molecular dynamics simulations; and quantified the impact of calcite dissolution rate on macroscopic fracturing using finite element models. With microfluidic experiments and modeling, we show the effect of local flow fields on the dissolution kinetics of calcite. Taken together across a wide range of scales and methods, our studies allow us to separate the effects of reaction, flow, and transport, on calcite fracturing and the evolution of strontium isotopic signatures in the reactive fluids.
We present a dynamic laboratory spontaneous imbibition test and interpretation method, demonstrated on volcanic tuff samples from the Nevada National Security Site. The method includes numerical inverse modeling to quantify uncertainty of estimated two-phase fluid flow properties. As opposed to other approaches requiring multiple different laboratory instruments, the dynamic imbibition method simultaneously estimates capillary pressure and relative permeability from one test apparatus.
Of interest to the Underground Nuclear Explosion Signatures Experiment are patterns and timing of explosion-generated noble gases that reach the land surface. The impact of potentially simultaneous flow of water and gas on noble gas transport in heterogeneous fractured rock is a current scientific knowledge gap. This article presents field and laboratory data to constrain and justify a triple continua conceptual model with multimodal multiphase fluid flow constitutive equations that represents host rock matrix, natural fractures, and induced fractures from past underground nuclear explosions (UNEs) at Aqueduct and Pahute Mesas, Nevada National Security Site, Nevada, USA. Capillary pressure from mercury intrusion and direct air–water measurements on volcanic tuff core samples exhibit extreme spatial heterogeneity (i.e., variation over multiple orders of magnitude). Petrographic observations indicate that heterogeneity derives from multimodal pore structures in ash-flow tuff components and post-depositional alteration processes. Comparisons of pre- and post-UNE samples reveal different pore size distributions that are due in part to microfractures. Capillary pressure relationships require a multimodal van Genuchten (VG) constitutive model to best fit the data. Relative permeability estimations based on unimodal VG fits to capillary pressure can be different from those based on bimodal VG fits, implying the choice of unimodal vs. bimodal fits may greatly affect flow and transport predictions of noble gas signatures. The range in measured capillary pressure and predicted relative permeability curves for a given lithology and between lithologies highlights the need for future modeling to consider spatially distributed properties.
Natural and induced fractures are potential preferential pathways for migration of radioactive gases to earths surface from underground nuclear explosions (UNEs). This report documents X-ray computed tomography (XRCT) imaging on 26 samples of rock core that was collected to support the Underground Nuclear Explosion Signatures Experiment (UNESE) program. The XRCT datasets are intended to help fill a data gap on the three-dimensional (3D) characteristics of natural and/or induced fractures at the centimeter and smaller scale, which may strongly influence multiphase fluid flow and transport properties of preferential flow paths and interaction with the matrix of the surrounding host rock. Pre- and post-UNE rock samples were carefully chosen to enable comparison of fractures as a function of lithologic and petrophysical properties, as well as distance to the past UNEs. This report serves as documentation for the data, including an introduction with the research motivation, a methods and materials section, descriptions of the XRCT datasets without post-processing, and recommendations for 3D quantification via image analysis and digital rock physics.
Improving predictive models for noble gas transport through natural materials at the field-scale is an essential component of improving US nuclear monitoring capabilities. Several field-scale experiments with a gas transport component have been conducted at the Nevada National Security Site (Non-Proliferation Experiment, Underground Nuclear Explosion Signatures Experiment). However, the models associated with these experiments have not treated zeolite minerals as gas adsorbing phases. This is significant as zeolites are a common alteration mineral with a high abundance at these field sites and are shown here to significantly fractionate noble gases during field-scale transport. This fractionation and associated retardation can complicate gas transport predictions by reducing the signal-to-noise ratio to the detector (e.g. mass spectrometers or radiation detectors) enough to mask the signal or make the data difficult to interpret. Omitting adsorption-related retardation data of noble gases in predictive gas transport models therefore results in systematic errors in model predictions where zeolites are present.Herein is presented noble gas adsorption data collected on zeolitized and non-zeolitized tuff. Experimental results were obtained using a unique piezometric adsorption system designed and built for this study. Data collected were then related to pure-phase mineral analyses conducted on clinoptilolite, mordenite, and quartz. These results quantify the adsorption capacity of materials present in field-scale systems, enabling the modeling of low-permeability rocks as significant sorption reservoirs vital to bulk transport predictions.
Geomechanics experiments were used to assess mechanical alteration of Boise Sandstone promoted by reactions with supercritical carbon dioxide (scCO2) and water vapor. During geologic carbon storage, scCO2 is injected into subsurface reservoirs, forming buoyant plumes. At brine-plume interfaces, scCO2 can dissolve into native brines, and water from brines can partition into scCO2, forming hydrous scCO2. This study investigates the effect of hydrous scCO2 on the strength of Boise Sandstone. Samples are first exposed to recirculating hydrous scCO2 for 24 h at 70 °C and 13.8 MPa scCO2 pressure. Samples are reacted with scCO2 with added water contents up to 500 mL. After scCO2 exposure, samples are deformed at room temperature under confining pressures of 3.4, 6.9, and 10.3 MPa. The results demonstrate that hydrous scCO2 induces chemical reactions in Boise Sandstone, with ions migrating from the solid into the hydrous scCO2 phase. At the longer time-scales, these reactions could lead to mechanical weakening in the samples; however, on the scale of our experiments, the strength changes are within sample variability. Because the solubility of water in scCO2 is extremely low (0.008 mol H2O per 1 mol CO2), the mineral dissolution of Boise Sandstone was under 0.002 wt.%. Additionally, mineral grains and pore throats in Boise Sandstone are cemented with quartz, which is not susceptible to dissolution at these conditions. Our results indicate that humidity in scCO2 plumes is unlikely to sustain chemical reactions and induce long term strength changes in quartz cemented sandstones due to resistant mineralogies and low water solubility.