Publications

18 Results

Search results

Jump to search filters

Aluminum scandium nitride films for piezoelectric transduction into silicon at gigahertz frequencies

Applied Physics Letters

Hackett, Lisa A.; Miller, Michael R.; Beaucejour, R.; Nordquist, Courtney; Taylor, Jeffrey; Santillan, S.; Olsson, R.H.; Eichenfield, M.

Recent advances in the growth of aluminum scandium nitride films on silicon suggest that this material platform could be applied for quantum electromechanical applications. Here, we model, fabricate, and characterize microwave frequency silicon phononic delay lines with transducers formed in an adjacent aluminum scandium nitride layer to evaluate aluminum scandium nitride films, at 32% scandium, on silicon interdigital transducers for piezoelectric transduction into suspended silicon membranes. We achieve an electromechanical coupling coefficient of 2.7% for the extensional symmetric-like Lamb mode supported in the suspended material stack and show how this coupling coefficient could be increased to at least 8.5%, which would further boost transduction efficiency and reduce the device footprint. The one-sided transduction efficiency, which quantifies the efficiency at which the source of microwave photons is converted to microwave phonons in the silicon membrane, is 10% at 5 GHz at room temperature and, as we discuss, there is a path to increase this toward near-unity efficiency based on a combination of modified device design and operation at cryogenic temperatures.

More Details

Non-reciprocal acoustoelectric microwave amplifiers with net gain and low noise in continuous operation

Nature Electronics

Hackett, Lisa A.; Miller, Michael R.; Weatherred, Scott E.; Arterburn, Shawn C.; Storey, Matthew J.; Peake, Greg; Dominguez, Daniel D.; Finnegan, Patrick S.; Friedmann, Thomas A.; Eichenfield, Matt

Piezoelectric acoustic devices that are integrated with semiconductors can leverage the acoustoelectric effect, allowing functionalities such as gain and isolation to be achieved in the acoustic domain. This could lead to performance improvements and miniaturization of radio-frequency electronic systems. However, acoustoelectric amplifiers that offer a large acoustic gain with low power consumption and noise figure at microwave frequencies in continuous operation have not yet been developed. Here we report non-reciprocal acoustoelectric amplifiers that are based on a three-layer heterostructure consisting of an indium gallium arsenide (In0.53Ga0.47As) semiconducting film, a lithium niobate (LiNbO3) piezoelectric film, and a silicon substrate. The heterostructure can continuously generate 28.0 dB of acoustic gain (4.0 dB net radio-frequency gain) for 1 GHz phonons with an acoustic noise figure of 2.8 dB, while dissipating 40.5 mW of d.c. power. We also create a device with an acoustic gain of 37.0 dB (11.3 dB net gain) at 1 GHz with 19.6 mW of d.c. power dissipation and a non-reciprocal transmission of over 55 dB.

More Details

Computational and Theoretical Modeling of Acoustoelectrically Enhanced Brillouin Optomechanical Interactions in Piezoelectric Semiconductors

Optics InfoBase Conference Papers

Storey, Matthew J.; Otterstrom, Nils T.; Behunin, Ryan O.; Hackett, Lisa A.; Rakich, Peter T.; Eichenfield, Matthew S.

We computationally explore the optical and elastic modes necessary for acoustoelectrically enhanced Brillouin interactions. The large simulated piezoelectric (k2 ≈ 6%) and optome-chanical (|g0| ≈ 8000 (rad/s)√m) coupling theoretically predicts a performance enhancement of several orders of magnitude in Brillouin-based photonic technologies.

More Details

Computational and Theoretical Modeling of Acoustoelectrically Enhanced Brillouin Optomechanical Interactions in Piezoelectric Semiconductors

Optics InfoBase Conference Papers

Storey, Matthew J.; Otterstrom, Nils T.; Behunin, Ryan O.; Hackett, Lisa A.; Rakich, Peter T.; Eichenfield, Matthew S.

We computationally explore the optical and elastic modes necessary for acoustoelectrically enhanced Brillouin interactions. The large simulated piezoelectric (k2 ≈ 6%) and optome-chanical (|g0| ≈ 8000 (rad/s)√m) coupling theoretically predicts a performance enhancement of several orders of magnitude in Brillouin-based photonic technologies.

More Details

Towards single-chip radiofrequency signal processing via acoustoelectric electron–phonon interactions

Nature Communications

Hackett, Lisa A.; Miller, Michael R.; Brimigion, Felicia M.; Dominguez, Daniel D.; Peake, Gregory M.; Tauke-Pedretti, Anna; Arterburn, Shawn C.; Friedmann, Thomas A.; Eichenfield, Matthew S.

The addition of active, nonlinear, and nonreciprocal functionalities to passive piezoelectric acoustic wave technologies could enable all-acoustic and therefore ultra-compact radiofrequency signal processors. Toward this goal, we present a heterogeneously integrated acoustoelectric material platform consisting of a 50 nm indium gallium arsenide epitaxial semiconductor film in direct contact with a 41° YX lithium niobate piezoelectric substrate. We then demonstrate three of the main components of an all-acoustic radiofrequency signal processor: passive delay line filters, amplifiers, and circulators. Heterogeneous integration allows for simultaneous, independent optimization of the piezoelectric-acoustic and electronic properties, leading to the highest performing surface acoustic wave amplifiers ever developed in terms of gain per unit length and DC power dissipation, as well as the first-ever demonstrated acoustoelectric circulator with an isolation of 46 dB with a pulsed DC bias. Finally, we describe how the remaining components of an all-acoustic radiofrequency signal processor are an extension of this work.

More Details

Acoustoelectric Surface Acoustic Wave Switch in An Epitaxial Ingaas on Lithium Niobate Heterostructure

21st International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS 2021

Storey, Matthew J.; Hackett, Lisa A.; DiGregorio, Sara D.; Miller, Michael R.; Peake, Gregory M.; Eichenfield, Matthew S.; Weinstein, Dana

This work presents a 3-Port acoustoelectric switch design for surface acoustic wave signal processing. Using a multistrip coupler, the input acoustic wave at Port 1 is split into two parallel and electrically cross-linked acoustoelectric delay lines where an applied voltage can alter the gain and attenuation in each delay line based on the voltage polarity. The switch is demonstrated using a 270 MHz Leaky SAW mode on an InGaAs on 41° Y-cut lithium niobate heterostructure. Applying a +40 V voltage pulse results in an IL of -12.5 dB and -57.5 dB in the gain and isolation switch paths, respectively. This leads to a 45 dB difference in signal strength at the output ports.

More Details

Megahertz Bandwidth Bulk Micromachined Optomechanical Accelerometer with Fiber Optical Interconnects

INERTIAL 2021 - 8th IEEE International Symposium on Inertial Sensors and Systems, Proceedings

Dominguez, Daniel D.; Hackett, Lisa A.; Miller, Michael R.; Restrepo, Jennifer R.; Casper, Katya M.; Eichenfield, Matthew S.

We present the design, fabrication, and initial characterization of a CMOS compatible, ultra-high bandwidth, bulk-micro machined, optomechanical accelerometer. Displacement detection is achieved via a SiN integrated photonics Mach-Zehnder interferometer (MZI) fabricated on the surface of the device that is optomechanically coupled to acceleration-induced deformation of the accelerometer's proof mass tethers. The device is designed to measure vibrations at microsecond timescales with high dynamic range for the characterization of shock dynamics.

More Details

Active and Nonreciprocal Radio-Frequency Acoustic Microsystems

Hackett, Lisa A.; Siddiqui, Aleem M.; Dominguez, Daniel D.; Douglas, James K.; Tauke-Pedretti, Anna; Friedmann, Thomas A.; Peake, Gregory M.; Arterburn, Shawn C.; Miller, Michael R.; Eichenfield, Matthew S.

Radio frequency (RF) devices are becoming more multi-band, increasing the number of filters and other front-end components while simultaneously pushing towards reduced cost, size, weight, and power (CSWaP). One approach to reducing CSWaP is to augment the achievable functionalities of electromechanical/acoustic filtering chips to include "active" and nonlinear functionalities, such as gain and mixing. The acoustoelectric (AE) effect could enable such active acoustic wave devices. We have examined the AE effect with a leaky surface acoustic wave (LSAW) in a monolithic structure of epitaxial indium gallium arsenide (In GaAs) on lithium niobate (LiNb0 3 ). This lead to experimentally demonstrated state-of-the-art SAW amplifier performance in terms of gain per acoustic wavelength, reduced power consumption, and increased power efficiency. We quantitatively compare the amplifier performance to previous notable works and discuss the outlook of active acoustic wave components using this material platform. Ultimately, this could lead to smaller, higher-performance RF signal processors for communications applications.

More Details

High-gain leaky surface acoustic wave amplifier in epitaxial InGaAs on lithium niobate heterostructure

Applied Physics Letters

Hackett, Lisa A.; Siddiqui, Aleem M.; Dominguez, Daniel D.; Douglas, James K.; Tauke-Pedretti, Anna; Friedmann, Thomas A.; Peake, Gregory M.; Arterburn, Shawn C.; Eichenfield, Matthew S.

Active surface acoustic wave components have the potential to transform RF front ends by consolidating functionalities that currently occur across multiple chip technologies, leading to reduced insertion loss from converting back and forth between acoustic and electronic domains in addition to improved size and power efficiency. This letter demonstrates a significant advance in these active devices with a compact, high-gain, and low-power leaky surface acoustic wave amplifier based on the acoustoelectric effect. Devices use an acoustically thin semi-insulating InGaAs surface film on a YX lithium niobate substrate to achieve exceptionally high acoustoelectric interaction strength via an epitaxial In0.53Ga0.47As(P)/InP quaternary layer structure and wafer-scale bonding. We demonstrate 1.9 dB of gain per acoustic wavelength and power consumption of 90 mW for 30 dB of electronic gain. Despite the strong intrinsic leaky propagation loss, 5 dB of terminal gain is obtained for a semiconductor that is only 338 μm long due to state-of-the-art heterogenous integration and an improved material platform.

More Details

Large Acoustoelectric Effect in Wafer Bonded Indium Gallium Arsenide / Lithium Niobate Heterostructure Augmented by Novel Gate Control

2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII, TRANSDUCERS 2019 and EUROSENSORS XXXIII

Siddiqui, Aleem M.; Hackett, Lisa A.; Dominguez, Daniel D.; Tauke-Pedretti, Anna; Friedmann, Thomas A.; Peake, Gregory M.; Miller, Michael R.; Douglas, James K.; Eichenfield, Matthew S.

This paper demonstrates a monolithic surface acoustic wave amplifier fabricated by state-of-the-art heterogenous integration of a IH-V InGaAs-based epitaxial material stack and LiNb03. Due to the superior properties of the materials employed, we observe electron gain and also non-reciprocal gain in excess of 30dB with reduced power consumption. Additionally, we present a framework for performance optimization as a function of material parameters for a targeted gain. This platform enables further advances in active and non-reciprocal piezoelectric acoustic devices.

More Details
18 Results
18 Results