Publications

7 Results

Search results

Jump to search filters

Towards understanding stress corrosion cracking of austenitic stainless steels exposed to realistic sea salt brines

Corrosion Science

Katona, Ryan M.; Taylor, Jason M.; Mccready, T.A.; Bryan, C.R.; Schaller, Rebecca S.

Stress corrosion cracking behavior of stainless steel 304 L was investigated in full immersion, evaporated artificial sea salt brines (ASW) at 55 °C. It was observed that brines representative of thermodynamically stable brines at lower relative humidity (40% RH, MgCl2-dominant) had a faster crack growth rate than high relative humidity brines (76% RH, NaCl-dominant). Observed crack growth rates (da/dt) under constant stress intensity (K) conditions were determined to be independent of transitioning procedure (rising K or decreasing frequency) regardless of solutions investigated for the orientation presented. Further, positive strain rates had little to no impact on the observed da/dt. The observed behavior suggests an anodic dissolution enhanced hydrogen embrittlement mechanism for SS304L in concentrated ASW environments at 55 °C. Additional explorations further examined environmental influences on da/dt. Nitrate additions to 40% ASW at 55 °C solutions were shown to decrease measured da/dt and further additions stopped measurable crack growth. After sufficient nitrate had been added to fully stifle crack growth, a temperature increase to 75 °C induced cracking again, and a subsequent decrease to 55 °C once again stopped da/dt. These tests demonstrate the importance of ascertaining both brine-specific chemical and dynamic environmental influences on da/dt.

More Details

Analysis of Dust and Corrosion Witness Samples Recovered from SNF Dry Storage Systems, Maine Yankee, 2023

Bryan, C.R.; Katona, Ryan M.; Knight, A.W.; Mccready, T.A.; Schaller, Rebecca S.

This report documents the results of a long-term (5.79 year) exposure of 4-point bend corrosion test samples in the inlet and outlet vents of four spent nuclear fuel dry storage systems at the Maine Yankee Independent Spent Fuel Storage Installation. The goal of the test was to evaluate the corrosiveness of salt aerosols in a realistic near-marine environment, providing a data set for improved understanding of stress corrosion cracking of spent nuclear fuel dry storage canisters. Examination of the samples after extraction showed minor corrosion was present, mostly on rough-ground surfaces. However, dye penetrant testing showed that no SCC cracks were present. Dust collected on coupons co-located with the corrosion specimens was analyzed by scanning electron microscopy and leached to determine the soluble salts present. The dust was mostly organic material (pollen and stellate trichomes), with lesser detrital mineral grains. Salts present were a mix of sea-salts and continental salts, with chloride dominating the anions, but significant amounts of nitrate were also present. Both corrosion samples and dust samples showed evidence of wetting, indicating entry of water into the vents. The results of this field test suggest that the environment at Maine Yankee is not highly aggressive, although extrapolation from the periodically wetted vent samples to the hot, dry, canister surface may be difficult. No stress corrosion cracks were observed, but minor corrosion was present despite high nitrate concentrations in the salts. These observations may help address the ongoing question of the importance of nitrate in suppressing corrosion and SCC.

More Details

Corrosion-Resistant Coatings on Spent Nuclear Fuel Canisters to Mitigate and Repair Potential Stress Corrosion Cracking (FY23 Status)

Nation, B.L.; Knight, A.W.; Maguire, Makeila; Verma, Samay; Click, Natalie; Debrun, Gavin; Mccready, T.A.; Katona, Ryan M.; Schaller, Rebecca S.; Bryan, C.R.

This report summarizes the activities performed by Sandia National Laboratories in FY23 to identify and test coating materials for the prevention, mitigation, and/or repair of potential chloride-induced stress corrosion cracking in spent nuclear fuel dry storage canisters. This work continues efforts by Sandia National Laboratories that are summarized in previous reports from FY20 through FY22 on the same topic. In FY23, Sandia National Laboratories, in collaboration with five industry partners through a memorandum of understanding, evaluated the physical, mechanical, and corrosion-resistance properties of eight different coating systems. The evaluation included thermal and radiation environments relevant to various time periods of storage for spent nuclear fuel canisters. The coating systems include polymeric (polyetherketoneketone, modified polyimide/polyurea, modified phenolic resin, epoxy), organic/inorganic ceramic hybrids (silane-based polyurethane hybrid and a quasi-ceramic sol-gel polyurethane hybrid), and coatings utilizing a Zn-rich primer applied to stainless steel coupons. The results and implications of these tests are summarized in this report. These analyses will be used to identify the most effective coatings for potential use on spent nuclear fuel dry storage canisters and to identify specific needs for further optimization of coating technologies for application on spent nuclear fuel canisters.

More Details
7 Results
7 Results