Improved neural operators for fast and accurate pressure and saturation prediction at the IBDP site
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Computational and Mathematical Organization Theory
Journal of Simulation
Measures of simulation model complexity generally focus on outputs; we propose measuring the complexity of a model’s causal structure to gain insight into its fundamental character. This article introduces tools for measuring causal complexity. First, we introduce a method for developing a model’s causal structure diagram, which characterises the causal interactions present in the code. Causal structure diagrams facilitate comparison of simulation models, including those from different paradigms. Next, we develop metrics for evaluating a model’s causal complexity using its causal structure diagram. We discuss cyclomatic complexity as a measure of the intricacy of causal structure and introduce two new metrics that incorporate the concept of feedback, a fundamental component of causal structure. The first new metric introduced here is feedback density, a measure of the cycle-based interconnectedness of causal structure. The second metric combines cyclomatic complexity and feedback density into a comprehensive causal complexity measure. Finally, we demonstrate these complexity metrics on simulation models from multiple paradigms and discuss potential uses and interpretations. These tools enable direct comparison of models across paradigms and provide a mechanism for measuring and discussing complexity based on a model’s fundamental assumptions and design.
The prevalence of COVID-19 is shaped by behavioral responses to recommendations and warnings. Available information on the disease determines the population’s perception of danger and thus its behavior; this information changes dynamically, and different sources may report conflicting information. We study the feedback between disease, information, and stay-at-home behavior using a hybrid agent-based-system dynamics model that incorporates evolving trust in sources of information. We use this model to investigate how divergent reporting and conflicting information can alter the trajectory of a public health crisis. The model shows that divergent reporting not only alters disease prevalence over time, but also increases polarization of the population’s behaviors and trust in different sources of information.
Abstract not provided.
In recent years, infections and damage caused by malware have increased at exponential rates. At the same time, machine learning (ML) techniques have shown tremendous promise in many domains, often out performing human efforts by learning from large amounts of data. Results in the open literature suggest that ML is able to provide similar results for malware detection, achieving greater than 99% classifcation accuracy [49]. However, the same detection rates when applied in deployed settings have not been achieved. Malware is distinct from many other domains in which ML has shown success in that (1) it purposefully tries to hide, leading to noisy labels and (2) often its behavior is similar to benign software only differing in intent, among other complicating factors. This report details the reasons for the diffcultly of detecting novel malware by ML methods and offers solutions to improve the detection of novel malware.
Abstract not provided.
Abstract not provided.
The causal structure of a simulation is a major determinant of both its character and behavior, yet most methods we use to compare simulations focus only on simulation outputs. We introduce a method that combines graphical representation with information theoretic metrics to quantitatively compare the causal structures of models. The method applies to agent-based simulations as well as system dynamics models and facilitates comparison within and between types. Comparing models based on their causal structures can illuminate differences in assumptions made by the models, allowing modelers to (1) better situate their models in the context of existing work, including highlighting novelty, (2) explicitly compare conceptual theory and assumptions to simulated theory and assumptions, and (3) investigate potential causal drivers of divergent behavior between models. We demonstrate the method by comparing two epidemiology models at different levels of aggregation.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Computational and Mathematical Organization Theory
This report describes research conducted to use data science and machine learning methods to distinguish targeted genome editing versus natural mutation and sequencer machine noise. Genome editing capabilities have been around for more than 20 years, and the efficiencies of these techniques has improved dramatically in the last 5+ years, notably with the rise of CRISPR-Cas technology. Whether or not a specific genome has been the target of an edit is concern for U.S. national security. The research detailed in this report provides first steps to address this concern. A large amount of data is necessary in our research, thus we invested considerable time collecting and processing it. We use an ensemble of decision tree and deep neural network machine learning methods as well as anomaly detection to detect genome edits given either whole exome or genome DNA reads. The edit detection results we obtained with our algorithms tested against samples held out during training of our methods are significantly better than random guessing, achieving high F1 and recall scores as well as with precision overall.
IEEE Transactions on Reliability
Complex networks of information processing systems, or information supply chains, present challenges for performance analysis. We establish a mathematical setting, in which a process within an information supply chain can be analyzed in terms of the functionality of the system's components. Principles of this methodology are rigorously defended and induce a model for determining the reliability for the various products in these networks. Our model does not limit us from having cycles in the network, as long as the cycles do not contain negation. It is shown that our approach to reliability resolves the nonuniqueness caused by cycles in a probabilistic Boolean network. An iterative algorithm is given to find the reliability values of the model, using a process that can be fully automated. This automated method of discerning reliability is beneficial for systems managers. As a systems manager considers systems modification, such as the replacement of owned and maintained hardware systems with cloud computing resources, the need for comparative analysis of system reliability is paramount. The model is extended to handle conditional knowledge about the network, allowing one to make predictions of weaknesses in the system. Finally, to illustrate the model's flexibility over different forms, it is demonstrated on a system of components and subcomponents.
2022 IEEE Kansas Power and Energy Conference, KPEC 2022
Grid operating security studies are typically employed to establish operating boundaries, ensuring secure and stable operation for a range of operation under NERC guidelines. However, if these boundaries are violated, the existing system security margins will be largely unknown. As an alternative to the use of complex optimizations over dynamic conditions, this work employs the use of Reinforcement-based Machine Learning to identify a sequence of secure state transitions which place the grid in a higher degree of operating security with greater static and dynamic stability margins. The approach requires the training of a Machine Learning Agent to accomplish this task using modeled data and employs it as a decision support tool under severe, near-blackout conditions.
2022 IEEE Kansas Power and Energy Conference, KPEC 2022
Grid operating security studies are typically employed to establish operating boundaries, ensuring secure and stable operation for a range of operation under NERC guidelines. However, if these boundaries are violated, the existing system security margins will be largely unknown. As an alternative to the use of complex optimizations over dynamic conditions, this work employs the use of Reinforcement-based Machine Learning to identify a sequence of secure state transitions which place the grid in a higher degree of operating security with greater static and dynamic stability margins. The approach requires the training of a Machine Learning Agent to accomplish this task using modeled data and employs it as a decision support tool under severe, near-blackout conditions.
Abstract not provided.
Subsurface energy activities such as unconventional resource recovery, enhanced geothermal energy systems, and geologic carbon storage require fast and reliable methods to account for complex, multiphysical processes in heterogeneous fractured and porous media. Although reservoir simulation is considered the industry standard for simulating these subsurface systems with injection and/or extraction operations, reservoir simulation requires spatio-temporal “Big Data” into the simulation model, which is typically a major challenge during model development and computational phase. In this work, we developed and applied various deep neural network-based approaches to (1) process multiscale image segmentation, (2) generate ensemble members of drainage networks, flow channels, and porous media using deep convolutional generative adversarial network, (3) construct multiple hybrid neural networks such as convolutional LSTM and convolutional neural network-LSTM to develop fast and accurate reduced order models for shale gas extraction, and (4) physics-informed neural network and deep Q-learning for flow and energy production. We hypothesized that physicsbased machine learning/deep learning can overcome the shortcomings of traditional machine learning methods where data-driven models have faltered beyond the data and physical conditions used for training and validation. We improved and developed novel approaches to demonstrate that physics-based ML can allow us to incorporate physical constraints (e.g., scientific domain knowledge) into ML framework. Outcomes of this project will be readily applicable for many energy and national security problems that are particularly defined by multiscale features and network systems.
Abstract not provided.