Publications

22 Results

Search results

Jump to search filters

The Cryosphere/Ocean Distributed Acoustic Sensing (CODAS) Experiment

Baker, Michael G.; Abbott, Robert; Rourke, William T.'.

Distributed acoustic sensing (DAS) has a demonstrated potential for wide-scale and continuous in situ monitoring of near-surface environmental and anthropogenic processes. DAS is attractive for development as a multi-geophysical observatory due to the prevalence of existing fiber infrastructure in regions with environmental, cultural, or strategic significance. To evaluate the efficacy of this technology for monitoring of polar environmental processes, we collected DAS data from a 37-km long section of seafloor telecommunications fiber located on the continental shelf of the Beaufort Sea, Alaska. This experiment spanned eight, one-week, seasonally-distributed periods across two years. This was the first ever deployment of seafloor DAS beneath sea ice, and the first deployment in any marine environment to span multiple seasons. We recorded a variety of environmental and anthropogenic signals with demonstrable utility for the study of sea ice dynamics and tracking of ocean vessels and ice-traversing vehicles.

More Details

CODAS Data from Oliktok Point, Beaufort Sea, Alaska

Baker, Michael G.; Abbott, Robert

Cryosphere/Ocean Distributed Acoustic Sensing (CODAS) data collected from the Beaufort Sea, Alaska, using ~37.4 km of dark telecommunications fiber located at Oliktok Point, Alaska. Data were collected with a Silixa iDAS, using 10 m gauge length, 2 m spatial resolution, and 1000 Hz sample rate. Provided here are the DAS-recorded time series for the rapid refreeze event described in Baker & Abbott (2022) (see link below). This covers a date range of 2021-11-10 15:00 UTC to 2021-11-11 17:00 UTC. Data have been decimated to 100 Hz and 20 m (i.e., every 10th channel for 1831 channels, total), as used in Baker & Abbott (2022). Data have been extracted from raw format into 1-hour long .sac* files and organized into directories by channel number, spanning channels 100 to 18400. Time series units are nano-strainrate (nm/m/s). For distribution, data have been compressed into .zip files containing all time series files for 100 channels. *For information on the Seismic Analysis Code (SAC) file format: https://seiscode.iris.washington.edu/projects/sac

More Details
22 Results
22 Results