Publications

Results 1–25 of 361

Search results

Jump to search filters

Guiding Principles for Geochemical/Thermodynamic Model Development and Validation in Nuclear Waste Disposal: A Close Examination of Recent Thermodynamic Models for H+—Nd3+—NO3−(—Oxalate) Systems

Energies

Xiong, Yongliang; Wang, Yifeng

Development of a defensible source-term model (STM), usual ly a thermodynamical model for radionuclide solubility calculations, is critical to a performance assessment (PA) of a geologic repository for nuclear waste disposal. Such a model is generally subjected to rigorous regulatory scrutiny. In this article, we highlight key guiding principles for STM model development and validation in nuclear waste management. We illustrate these principles by closely examining three recently developed thermodynamic models with the Pitzer formulism for aqueous H+—Nd3+—NO3−(—oxalate) systems in a reverse alphabetical order of the authors: the XW model developed by Xiong and Wang, the OWC model developed by Oakes et al., and the GLC model developed by Guignot et al., among which the XW model deals with trace activity coefficients for Nd(III), while the OWC and GLC models are for concentrated Nd(NO3)3 electrolyte solutions. The principles highlighted include the following: (1) Principle 1. Validation against independent experimental data: A model should be validated against experimental data or field observations that have not been used in the original model parameterization. We tested the XW model against multiple independent experimental data sets including electromotive force (EMF), solubility, water vapor, and water activity measurements. The results show that the XW model is accurate and valid for its intended use for predicting trace activity coefficients and therefore Nd solubility in repository environments. (2) Principle 2. Testing for relevant and sensitive variables: Solution pH is such a variable for an STM and easily acquirable. All three models are checked for their ability to predict pH conditions in Nd(NO3)3 electrolyte solutions. The OWC model fails to provide a reasonable estimate for solution pH conditions, thus casting serious doubt on its validity for a source-term calculation. In contrast, both the XW and GLC models predict close-to-neutral pH values, in agreement with experimental measurements. (3) Principle 3. Honoring physical constraints: Upon close examination, it is found that the Nd(III)-NO3 association schema in the OWC model suffers from two shortcomings. Firstly, its second stepwise stability constant for Nd(NO3)2+ (log K2) is much higher than the first stepwise stability constant for NdNO32+ (log K1), thus violating the general rule of (log K2–log K1) < 0, or (Formula presented.). Secondly, the OWC model predicts abnormally high activity coefficients for Nd(NO3)2+ (up to ~900) as the concentration increases. (4) Principle 4. Minimizing degrees of freedom for model fitting: The OWC model with nine fitted parameters is compared with the GLC model with five fitted parameters, as both models apply to the concentrated region for Nd(NO3)3 electrolyte solutions. The latter appears superior to the former because the latter can fit osmotic coefficient data equally well with fewer model parameters. The work presented here thus illustrates the salient points of geochemical model development, selection, and validation in nuclear waste management.

More Details

Comment on “Thermodynamic Models for the (HClO4 + NaClO4){aq} and (HBr + NaBr){aq} Systems at 298.15 K and 0.1 MPa” Authored by Oakes, C. S., Ward, A. L., Chugunov, N. Journal of Chemical & Engineering Data, 68, 2554–2562

Journal of Chemical and Engineering Data

Xiong, Yongliang; Wang, Yifeng

Oakes et al. (2023) published a review article in this journal. In that paper, Oakes et al. (2023) developed thermodynamic models to describe electrolyte solutions for HClO4–NaClO4–H2O and HBr–NaBr–H2O systems, based on literature data. In their paper, previously published work from researchers in the field was criticized; some of it is ours. Here, in this brief Comment, we first comment on their models, and then we briefly provide a technical response to that criticism.

More Details

Nuclear magnetic resonance and molecular simulation study of H2 and CH4 adsorption onto shale and sandstone for hydrogen geological storage

International Journal of Hydrogen Energy

Ho, Tuan A.; Dasgupta, Nabankur; Choudhary, Aditya; Wang, Yifeng

Understanding pure H2 and H2/CH4 adsorption and diffusion in earth materials is one vital step toward a successful and safe H2 storage in depleted gas reservoirs. Despite recent research efforts such understanding is far from complete. In this work we first use Nuclear Magnetic Resonance (NMR) experiments to study the NMR response of injected H2 into Duvernay shale and Berea sandstone samples, representing materials in confining and storage zones. Then we use molecular simulations to investigate H2/CH4 competitive adsorption and diffusion in kerogen, a common component of shale. Our results indicate that in shale there are two H2 populations, i.e., free H2 and adsorbed H2, that yield very distinct NMR responses. However, only free gas presents in sandstone that yields a H2 NMR response similar to that of bulk H2. About 10 % of injected H2 can be lost due to adsorption/desorption hysteresis in shale, and no H2 loss (no hysteresis) is observed in sandstone. Our molecular simulation results support our NMR results that there are two H2 populations in nanoporous materials (kerogen). The simulation results also indicate that CH4 outcompetes H2 in adsorption onto kerogen, due to stronger CH4-kerogen interactions than H2-kerogen interactions. Nevertheless, in a depleted gas reservoir with low CH4 gas pressure, about ∼30 % of residual CH4 can be desorbed upon H2 injection. The simulation results also predict that H2 diffusion in porous kerogen is about one order of magnitude higher than that of CH4 and CO2. This work provides an understanding of H2/CH4 behaviors in deleted gas reservoirs upon H2 injection and predictions of H2 loss and CH4 desorption in H2 storage.

More Details

Application of machine learning for modeling brønsted-guggenheim-scatchard specific ion interaction theory (SIT) coefficients

Applied Geochemistry

Lopez, Carlos M.; Wang, Yifeng; Xiong, Yongliang; Zhang, Pengchu; Favela, S.D.

Machine learning methodologies can provide insight into Brønsted-Guggenheim-Scatchard specific ion interaction theory (SIT) parameter values where experimental data availability may be limited. This study develops and executes machine learning frameworks to model the SIT interaction coefficient, ε. Key findings include successful estimations of ε via artificial neural networks using clustering and value prediction approaches. Applicability to other chemical parameters is also assessed briefly. Models developed here provide support for a use-case of machine learning in geologic nuclear waste disposal research applications, namely in predictions of chemical behaviors of high ionic strength solutions (i.e., subsurface brines).

More Details

Low hydrogen solubility in clay interlayers limits gas loss in hydrogen geological storage

Sustainable Energy and Fuels

Ho, Tuan A.; Jove-Colon, Carlos F.; Wang, Yifeng

Gas intercalation into clay interlayers may result in hydrogen loss in the geological storage of hydrogen; a phenomenon that has not been fully understood and quantified. Here we use metadynamics molecular simulations to calculate the free energy landscape of H2 intercalation into montmorillonite interlayers and the H2 solubility in the confined water; in comparison with results obtained for CO2. The results indicate that H2 intercalation into hydrated interlayers is thermodynamically unfavorable while CO2 intercalation can be favorable. H2 solubility in hydrated clay interlayers is in the same order of magnitude as that in bulk water and therefore no over-solubility effect due to nanoconfinement is observed - in striking contrast with CO2. These results indicate that H2 loss and leakage through hydrated interlayers due to intercalation in a subsurface storage system, if any, is limited.

More Details

A Thermodynamic Model for Nd(III)–Sulfate Interaction at High Ionic Strengths and Elevated Temperatures: Applications to Rare Earth Element Extraction

Journal of Solution Chemistry

Xiong, Yongliang; Xu, Guangping; Wang, Yifeng

Neodymium (Nd), a rare earth element (REE), is critical to numerous industries. Neodymium can be extracted from ore concentrates, waste materials, or recycled materials such as recycled Nd-Fe-B permanent magnets. In a standard process, concentrated sulfuric acid (H2SO4) is used as an extraction/leaching agent. Therefore, knowledge of Nd(III)–sulfate interaction at high ionic strengths is important for optimization of the extraction process. In addition, sulfate is also a major species in natural surface waters and present in nuclear waste streams. Nd(III) has been used a chemical analog to trivalent actinides in nuclear waste research and development. Consequently, knowledge of Nd(III)-sulfate interactions is also impactful to the field of nuclear waste management. In this study, we have developed a thermodynamic model that can describe the interaction of Nd(III) with sulfate to ionic strengths up to ~ 16.5 mol·kg–1 and to temperatures up to 100 °C. The model adopts the Pitzer formulation to describe activity coefficients of aqueous species. This model can be used to design and optimize a chemical process for REE recovery from ore concentrates, recycled materials, and acid mine drainage (AMD) and to understand the mobility of REEs and actinides in the environment.

More Details

Control of the Structural Charge Distribution and Hydration State upon Intercalation of CO2 into Expansive Clay Interlayers

Journal of Physical Chemistry Letters

Ho, Tuan A.; Wang, Yifeng; Rempe, Susan; Dasgupta, Nabankur; Xu, Guangping; Zwier, Timothy S.; Mills, Melissa M.

Numerous experimental investigations indicated that expansive clays such as montmorillonite can intercalate CO2 preferentially into their interlayers and therefore potentially act as a material for CO2 separation, capture, and storage. However, an understanding of the energy-structure relationship during the intercalation of CO2 into clay interlayers remains elusive. Here, we use metadynamics molecular dynamics simulations to elucidate the energy landscape associated with CO2 intercalation. Our free energy calculations indicate that CO2 favorably partitions into nanoconfined water in clay interlayers from a gas phase, leading to an increase in the CO2/H2O ratio in clay interlayers as compared to that in bulk water. CO2 molecules prefer to be located at the centers of charge-neutral hydrophobic siloxane rings, whereas interlayer spaces close to structural charges tend to avoid CO2 intercalation. The structural charge distribution significantly affects the amount of CO2 intercalated in the interlayers. These results provide a mechanistic understanding of CO2 intercalation in clays for CO2 separation, capture, and storage.

More Details

Direct Ink-Write Printing of Ceramic Clay with an Embedded Wireless Temperature and Relative Humidity Sensor

Sensors

Kruichak-Duhigg, Jessica N.; Marquez, Cory; Wang, Yifeng; Hyde, Anthony

This research presents a simple method to additively manufacture Cone 5 porcelain clay ceramics by using the direct ink-write (DIW) printing technique. DIW has allowed the application of extruding highly viscous ceramic materials with relatively high-quality and good mechanical properties, which additionally allows a freedom of design and the capability of manufacturing complex geometrical shapes. Clay particles were mixed with deionized (DI) water at different ratios, where the most suitable composition for 3D printing was observed at a 1:5 w/c ratio (16.2 wt.%. of DI water). Differential geometrical designs were printed to demonstrate the printing capabilities of the paste. In addition, a clay structure was fabricated with an embedded wireless temperature and relative humidity (RH) sensor during the 3D printing process. The embedded sensor read up to 65% RH and temperatures of up to 85 °F from a maximum distance of 141.7 m. The structural integrity of the selected 3D printed geometries was confirmed through the compressive strength of fired and non-fired clay samples, with strengths of 70 MPa and 90 MPa, respectively. This research demonstrates the feasibility of using the DIW printing of porcelain clay with embedded sensors, with fully functional temperature- and humidity-sensing capabilities.

More Details

Hydrophobic Nanoconfinement Enhances CO2 Conversion to H2CO3

Journal of Physical Chemistry Letters

Ho, Tuan A.; Dasgupta, Nabankur; Rempe, Susan; Wang, Yifeng

Understanding the formation of H2CO3 in water from CO2 is important in environmental and industrial processes. Although numerous investigations have studied this reaction, the conversion of CO2 to H2CO3 in nanopores, and how it differs from that in bulk water, has not been understood. We use ReaxFF metadynamics molecular simulations to demonstrate striking differences in the free energy of CO2 conversion to H2CO3 in bulk and nanoconfined aqueous environments. We find that nanoconfinement not only reduces the energy barrier but also reverses the reaction from endothermic in bulk water to exothermic in nanoconfined water. Also, charged intermediates are observed more often under nanoconfinement than in bulk water. Stronger solvation and more favorable proton transfer with increasing nanoconfinement enhance the thermodynamics and kinetics of the reaction. Here our results provide a detailed mechanistic understanding of an important step in the carbonation process, which depends intricately on confinement, surface chemistry, and CO2 concentration.

More Details

Carbon dioxide-enhanced metal release from kerogen

Scientific Reports

Ho, Tuan A.; Wang, Yifeng

Heavy metals released from kerogen to produced water during oil/gas extraction have caused major enviromental concerns. To curtail water usage and production in an operation and to use the same process for carbon sequestration, supercritical CO2 (scCO2) has been suggested as a fracking fluid or an oil/gas recovery agent. It has been shown previously that injection of scCO2 into a reservoir may cause several chemical and physical changes to the reservoir properties including pore surface wettability, gas sorption capacity, and transport properties. Using molecular dynamics simulations, we here demonstrate that injection of scCO2 might lead to desorption of physically adsorbed metals from kerogen structures. This process on one hand may impact the quality of produced water. On the other hand, it may enhance metal recovery if this process is used for in-situ extraction of critical metals from shale or other organic carbon-rich formations such as coal.

More Details

Low-dimensional physics of clay particle size distribution and layer ordering

Scientific Reports

Wang, Yifeng

Clays are known for their small particle sizes and complex layer stacking. We show here that the limited dimension of clay particles arises from the lack of long-range order in low-dimensional systems. Because of its weak interlayer interaction, a clay mineral can be treated as two separate low-dimensional systems: a 2D system for individual phyllosilicate layers and a quasi-1D system for layer stacking. The layer stacking or ordering in an interstratified clay can be described by a 1D Ising model while the limited extension of individual phyllosilicate layers can be related to a 2D Berezinskii–Kosterlitz–Thouless transition. This treatment allows for a systematic prediction of clay particle size distributions and layer stacking as controlled by the physical and chemical conditions for mineral growth and transformation. Clay minerals provide a useful model system for studying a transition from a 1D to 3D system in crystal growth and for a nanoscale structural manipulation of a general type of layered materials.

More Details
Results 1–25 of 361
Results 1–25 of 361