Emergent electronic and thermal behavior in cobaltates with high-entropy superlattice distortions
Abstract not provided.
Abstract not provided.
CLEO: Science and Innovations, CLEO: S and I 2024 in Proceedings CLEO 2024, Part of Conference on Lasers and Electro-Optics
We demonstrate an InAs-based terahertz (THz) metasurface emitter that can generate and focus THz pulses using a binary-phase Fresnel zone plate concept. The metalens emitter successfully generates a focused THz beam without additional THz optics.
Superconducting qubits have reached the point where system designers are worried about the heat that control wiring brings into the cryostat. To continue scaling cryogenic quantum systems, control solutions that work inside the cold space must be explored. One possibility is to use control electronics that is native to superconductivity, so called single-flux-quantum (SFQ) circuitry, to form an interface between qubits and whatever other electronics is needed to control eventual quantum systems. To begin exploring the utility of SFQ as control circuitry, we performed modeling and experiments on qubit readout using ballistic fluxons which are SFQ in the limit of ballistic fluxon transport. Our modeling results show that a flavor of qubit, the fluxonium, can be read out using ballistic fluxons. We designed test samples to prove some of the key concepts needed for such a readout but were ultimately unable to getting a working demonstration. The lack of testing success was due to challenges in fabrication and running short of time to perform testing rather than a fundamental problem with our analysis.
Journal of Physics D: Applied Physics
While radiation is known to degrade AlGaN/GaN high-electron-mobility transistors (HEMTs), the question remains on the extent of damage governed by the presence of an electrical field in the device. In this study, we induced displacement damage in HEMTs in both ON and OFF states by irradiating with 2.8 MeV Au4+ ion to fluence levels ranging from 1.72 × 10 10 to 3.745 × 10 13 ions cm−2, or 0.001-2 displacement per atom (dpa). Electrical measurement is done in situ, and high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray (EDX), geometrical phase analysis (GPA), and micro-Raman are performed on the highest fluence of Au4+ irradiated devices. The selected heavy ion irradiation causes cascade damage in the passivation, AlGaN, and GaN layers and at all associated interfaces. After just 0.1 dpa, the current density in the ON-mode device deteriorates by two orders of magnitude, whereas the OFF-mode device totally ceases to operate. Moreover, six orders of magnitude increase in leakage current and loss of gate control over the 2-dimensional electron gas channel are observed. GPA and Raman analysis reveal strain relaxation after a 2 dpa damage level in devices. Significant defects and intermixing of atoms near AlGaN/GaN interfaces and GaN layer are found from HRTEM and EDX analyses, which can substantially alter device characteristics and result in complete failure.
Abstract not provided.
CLEO: Science and Innovations, CLEO:S and I 2023
We demonstrate an InAs-based nonlinear dielectric metasurface, which can generate terahertz (THz) pulses with opposite phase in comparison to an unpatterned InAs layer. It enables binary phase THz metasurfaces for generation and focusing of THz pulses.
Proceedings of SPIE - The International Society for Optical Engineering
Aperture near-field microscopy and spectroscopy (a-SNOM) enables the direct experimental investigation of subwavelength-sized resonators by sampling highly confined local evanescent fields on the sample surface. Despite its success, the versatility and applicability of a-SNOM is limited by the sensitivity of the aperture probe, as well as the power and versatility of THz sources used to excite samples. Recently, perfectly absorbing photoconductive metasurfaces have been integrated into THz photoconductive antenna detectors, enhancing their efficiency and enabling high signal-to-noise ratio THz detection at significantly reduced optical pump powers. Here, we discuss how this technology can be applied to aperture near-field probes to improve both the sensitivity and potentially spatial resolution of a-SNOM systems. In addition, we explore the application of photoconductive metasurfaces also as near-field THz sources, providing the possibility of tailoring the beam profile, polarity and phase of THz excitation. Photoconductive metasurfaces therefore have the potential to broaden the application scope of aperture near-field microscopy to samples and material systems which currently require improved spatial resolution, signal-to-noise ratio, or more complex excitation conditions.
Abstract not provided.
Nanotechnology
Thin film platinum resistive thermometers are conventionally applied for resistance thermometry techniques due to their stability and proven measurement accuracy. Depending upon the required thermometer thickness and temperature measurement, however, performance benefits can be realized through the application of alternative nanometallic thin films. Herein, a comparative experimental analysis is provided on the performance of nanometallic thin film thermometers most relevant to microelectronics and thermal sensing applications: Al, Au, Cu, and Pt. Sensitivity is assessed through the temperature coefficient of resistance, measured over a range of 10-300 K for thicknesses nominally spanning 25-200 nm. The interplay of electron scattering sources, which give rise to the temperature-dependent TCR properties for each metal, are analyzed in the framework of a Mayadas-Shatzkes based model. Despite the prevalence of evaporated Pt thin film thermometers, Au and Cu films fabricated in a similar manner may provide enhanced sensitivity depending upon thickness. These results may serve as a guide as the movement toward smaller measurement platforms necessitates the use of smaller, thinner metallic resistance thermometers.
Applied Physics Letters
We examine the DC and radio frequency (RF) response of superconducting transmission line resonators comprised of very thin NbTiN films, < 12 nm in thickness, in the high-temperature limit, where the photon energy is less than the thermal energy. The resonant frequencies of these superconducting resonators show a significant nonlinear response as a function of RF input power, which can approach a frequency shift of Δ f = - 0.15 % in a - 20 dB span in the thinnest film. The strong nonlinear response allows these very thin film resonators to serve as high kinetic inductance parametric amplifiers.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Electron Devices
Capacitance-voltage ( {C} - {V} ) characteristics and carrier transport properties of 2-D electron gases (2DEGs) in an undoped Si/SiGe heterostructure at {T}= {4} - {35} K are presented. Two capacitance plateaus due to density saturation of the 2DEG in the buried Si quantum well (QW) are observed and explained by a model of surface tunneling. The peak mobility at 4 K is 4.1 \times 10^{{5}} cm2/ \text{V}\cdot \text{s} and enhanced by a factor of 1.97 at an even lower carrier density compared to the saturated carrier density, which is attributed to the effect of remote carrier screening. At {T}\,\,=35 K, the mobility enhancement with a factor of 1.35 is still observed, which suggests the surface tunneling is still dominant.
Abstract not provided.
Abstract not provided.
Defects in materials are an ongoing challenge for quantum bits, so called qubits. Solid state qubits—both spins in semiconductors and superconducting qubits—suffer from losses and noise caused by two-level-system (TLS) defects thought to reside on surfaces and in amorphous materials. Understanding and reducing the number of such defects is an ongoing challenge to the field. Superconducting resonators couple to TLS defects and provide a handle that can be used to better understand TLS. We develop noise measurements of superconducting resonators at very low temperatures (20 mK) compared to the resonant frequency, and low powers, down to single photon occupation.
Abstract not provided.
Abstract not provided.
Optics Letters
Despite their wide use in terahertz (THz) research and technology, the application spectra of photoconductive antenna (PCA) THz detectors are severely limited due to the relatively high optical gating power requirement. This originates from poor conversion efficiency of optical gate beam photons to photocurrent in materials with subpicosecond carrier lifetimes. Here we show that using an ultra-thin (160 nm), perfectly absorbing low-temperature grown GaAs metasurface as the photoconductive channel drastically improves the efficiency of THz PCA detectors. This is achieved through perfect absorption of the gate beam in a significantly reduced photoconductive volume, enabled by the metasurface. This Letter demonstrates that sensitive THz PCA detection is possible using optical gate powers as low as 5 μW-three orders of magnitude lower than gating powers used for conventionalPCAdetectors.We show that significantly higher optical gate powers are not necessary for optimal operation, as they do not improve the sensitivity to the THz field. This class of efficient PCA THz detectors opens doors for THz applications with low gate power requirements.
Advanced Materials
A demonstration of 2D hole gases in GeSn/Ge heterostructures with a mobility as high as 20 000 cm2 V–1 s–1 is given. Both the Shubnikov–de Haas oscillations and integer quantum Hall effect are observed, indicating high sample quality. The Rashba spin-orbit coupling (SOC) is investigated via magneto-transport. Further, a transition from weak localization to weak anti-localization is observed, which shows the tunability of the SOC strength by gating. The magneto-transport data are fitted to the Hikami–Larkin–Nagaoka formula. The phase-coherence and spin-relaxation times, as well as spin-splitting energy and Rashba coefficient of the k-cubic term, are extracted. Furthermore, the analysis reveals that the effects of strain and confinement potential at a high fraction of Sn suppress the Rashba SOC caused by the GeSn/Ge heterostructures.
Applied Physics Letters
Modulation doping is a commonly adopted technique to create two-dimensional (2D) electrons or holes in semiconductor heterostructures. One constraint, however, is that the intentional dopants required for modulation doping are controlled and incorporated during the growth of heterostructures. Using undoped strained germanium quantum wells as the model material system, we show, in this work, that modulation doping can be achieved post-growth of heterostructures by ion implantation and dopant-activation anneals. The carrier density is controlled ex situ by varying the ion fluence and implant energy, and an empirical calibration curve is obtained. While the mobility of the resulting 2D holes is lower than that in undoped heterostructure field-effect transistors built using the same material, the achievable carrier density is significantly higher. Potential applications of this modulation-doping technique are discussed.
Abstract not provided.