Publications

8 Results
Skip to search filters

Exploring wave propagation in heterogeneous metastructures using the relaxed micromorphic model

Journal of the Mechanics and Physics of Solids

Alberdi, Ryan A.; Robbins, Joshua R.; Walsh, Timothy W.; Dingreville, Remi P.

Metamaterials are artificial structures that can manipulate and control sound waves in ways not possible with conventional materials. While much effort has been undertaken to widen the bandgaps produced by these materials through design of heterogeneities within unit cells, comparatively little work has considered the effect of engineering heterogeneities at the structural scale by combining different types of unit cells. In this paper, we use the relaxed micromorphic model to study wave propagation in heterogeneous metastructures composed of different unit cells. We first establish the efficacy of the relaxed micromorphic model for capturing the salient characteristics of dispersive wave propagation through comparisons with direct numerical simulations for two classes of metamaterial unit cells: namely phononic crystals and locally resonant metamaterials. We then use this model to demonstrate how spatially arranging multiple unit cells into metastructures can lead to tailored and unique properties such as spatially-dependent broadband wave attenuation, rainbow trapping, and pulse shaping. In the case of the broadband wave attenuation application, we show that by building layered metastructures from different metamaterial unit cells, we can slow down or stop wave packets in an enlarged frequency range, while letting other frequencies through. In the case of the rainbow-trapping application, we show that spatial arrangements of different unit cells can be designed to progressively slow down and eventually stop waves with different frequencies at different spatial locations. Finally, in the case of the pulse-shaping application, our results show that heterogeneous metastructures can be designed to tailor the spatial profile of a propagating wave packet. Collectively, these results show the versatility of the relaxed micromorphic model for effectively and accurately simulating wave propagation in heterogeneous metastructures, and how this model can be used to design heterogeneous metastructures with tailored wave propagation functionalities.

More Details

Concurrent Shape and Topology Optimization

Robbins, Joshua R.; Alberdi, Ryan A.; Clark, Brett W.

The typical topology optimization workflow uses a design domain that does not change during the optimization process. Consequently, features of the design domain, such as the location of loads and constraints, must be determined in advance and are not optimizable. A method is proposed herein that allows the design domain to be optimized along with the topology. This approach uses topology and shape derivatives to guide nested optimizers to the optimal topology and design domain. The details of the method are discussed, and examples are provided that demonstrate the utility of this approach.

More Details

Evaluation of Structural Lattices for a Davis Gun Earth Penetrator Impact Experiment

Alberdi, Ryan A.; Erickson, John M.; White, Benjamin C.; Garland, Anthony G.; Jared, Bradley H.; Boyce, Brad B.

The advanced materials team investigated the use of additively manufactured metallic lattice structures for mitigating impact response in a Davis gun earth penetrator impact experiment. High-fidelity finite element models were developed and validated with quasistatic experiments. These models were then used to simulate the response of such lattices when subjected to the acceleration loads expected in the Davis gun experiment. Results reveal how the impact mitigation performance of lattices can change drastically at a certain relative density. Based on these observations, an experiment deck was designed to probe the response of lattices with different relative densities during the Davis gun phase 2 shots. The expected performance of these lattices is predicted before testing based on simulation results. The results of the Davis gun phase 2 shots are expected to provide data which will be used to assess the predictive capability of the finite element simulations in such a complex impact environment.

More Details

Interpenetrating lattices with enhanced mechanical functionality

Additive Manufacturing

White, Benjamin C.; Garland, Anthony G.; Alberdi, Ryan A.; Boyce, Brad B.

Metamaterials derive their unusual properties from their architected structure, which generally consists of a repeating unit cell designed to perform a particular function. However, existing metamaterials are, with few exceptions, physically continuous throughout their volume, and thus cannot take advantage of multi-body behavior or contact interactions. Here we introduce the concept of multi-body interpenetrating lattices, where two or more lattices interlace through the same volume without any direct connection to each other. This new design freedom allows us to create architected interpenetrating structures where energy transfer is controlled by surface interactions. As a result, multifunctional or composite-like responses can be achieved even with only a single print material. While the geometry defining interpenetrating lattices has been studied since the days of Euclid, additive manufacturing allows us to turn these mathematical concepts into physical objects with programmable interface-dominated properties. In this first study on interpenetrating lattices, we reveal remarkable mechanical properties including improved toughness, multi-stable/negative stiffness behavior, and electromechanical coupling.

More Details
8 Results
8 Results