Evaluation of novel materials for anion sorption
Abstract not provided.
Abstract not provided.
Construction and Building Materials
Risks associated with carbonation are a key limitation to greater replacement levels of ordinary portland cement (OPC) by supplementary cementitious materials (SCMs). The addition of pozzolanic SCMs in OPC alters the hydrate assemblage by forming phases like calcium-(alumina)-silicate-hydrate (C-(A)-S-H). The objective of the present study was to elucidate how such changes in hydrate assemblage influence the chemical mechanisms of carbonation in a realistic OPC system. Here, we show that synthetic zeolite Y (faujasite) is a highly reactive pozzolan in OPC that reduces the calcium content of hydration products via prompt consumption of calcium hydroxide from the evolving phase assemblage prior to CO2 exposure. Suppression of portlandite at moderate to high zeolite Y content led to a more damaging mechanism of carbonation by disrupting the formation of a passivating carbonate layer. Without this layer, carbonation depth and CO2 uptake are increased. Binders containing 12–18% zeolite Y by volume consumed all the calcium hydroxide from OPC during hydration and reduced the Ca/(Si+Al) ratio of the amorphous products to near 0.67. In these cases, higher carbonation depths were observed after exposure to ambient air with decalcification of C-(A)-S-H as the main source of CO2 buffering. Binders with either 0% or 4% zeolite Y contained calcium hydroxide in the hydrated microstructure, had higher Ca/(Si+Al) ratios, and formed a calcite-rich passivation layer that halted deep carbonation. Although the carbonated layer in the samples with 12% and 18% zeolite Y contained 70% and 76% less calcite than the OPC respectively, their higher carbonation depths resulted in total CO2 uptakes that were 12x greater than the OPC sample. Passivation layer formation in samples with calcium hydroxide explains this finding and was further supported by thermodynamic modeling. High Si/Al zeolite additives to OPC should be balanced with the calcium content for optimal carbonation resistance.
Abstract not provided.
Journal of Physical Chemistry C
Glycoboehmite (GB) materials are synthesized by a solvothermal reaction to form layered aluminum oxyhydroxide (boehmite) modified by intercalated butanediol molecules. These hybrid materials offer a platform to design materials with potentially novel sorption, wetting, and catalytic properties. Several synthetic methods have been used, resulting in different structural and spectroscopic properties, but atomistic detail is needed to determine the interlayer structure to explore the synthetic control of GB materials. Here, we use classical molecular dynamics (MD) simulations to compare the structural properties of GB interlayers containing chemisorbed butanediol molecules as a function of diol loading. Accompanying quantum (density functional theory, DFT) static calculations and MD simulations are used to validate the classical model and compute the infrared spectra of various models. Classical MD results reveal the existence of two unique interlayer environments at higher butanediol loading, corresponding to smaller (cross-linked) and expanded interlayers. DFT-computed infrared spectra reveal the sensitivity of the aluminol O-H stretch frequencies to the interlayer environment, consistent with the spectrum of the synthesized material. Insight from these simulations will aid in the characterization of the newly synthesized GB materials.
Abstract not provided.
Abstract not provided.
Nuclear Technology
Disposal of commercial spent nuclear fuel in a geologic repository is studied. In situ heater experiments in underground research laboratories provide a realistic representation of subsurface behavior under disposal conditions. This study describes process model development and modeling analysis for a full-scale heater experiment in opalinus clay host rock. The results of thermal-hydrology simulation, solving coupled nonisothermal multiphase flow, and comparison with experimental data are presented. The modeling results closely match the experimental data.
Thermal-Hydrologic (TH) modeling of DECOVALEX 2023, Task C has continued in FY23. This report summarizes progress in TH modeling of Step 1c, with calibration modeling and the addition of shotcrete. The work involves 3-D modeling of the full-scale emplacement experiment at the Mont Terri Underground Rock Laboratory (Nagra, 2019). While Step 1 is focused on modeling the heating phase of the FE experiment with changes in pore pressure in the Opalinus clay resulting from heating, Step 1c is focused on calibration of models using available data.
This report summarizes the fiscal year 2023 (FY23) status of the second phase of a series of borehole heater tests in salt at the Waste Isolation Pilot Plant (WIPP) funded by the Disposal Research and Development (R&D) program of the Spent Fuel & Waste Science and Technology (SFWST) office at the US Department of Energy’s Office of Nuclear Energy’s (DOE-NE) Office in the Spent Fuel and Waste Disposition (SFWD) program.
This report summarizes the international collaborations conducted by Sandia funded by the US Department of Energy Office (DOE) of Nuclear Energy (DOE-NE) Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D and Salt International work packages. This report satisfies the level-three milestone M3SF-23SN010303062. Several stand-alone sections make up this summary report, each completed by the participants. The sections discuss granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), numerical model comparison (DECOVALEX) and an NEA Salt Club working group on the development of scenarios as part of the performance assessment development process. Finally, we summarize events related to the US/German Workshop on Repository Research, Design and Operations.
This report describes research and development (R&D) activities conducted during Fiscal Year 2023 (FY23) in the Advanced Fuels and Advanced Reactor Waste Streams Strategies work package in the Spent Fuel Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). This report is focused on evaluating and cataloguing Advanced Reactor Spent Nuclear Fuel (AR SNF) and Advanced Reactor Waste Streams (ARWS) and creating Back-end Nuclear Fuel Cycle (BENFC) strategies for their disposition. The R&D team for this report is comprised of researchers from Sandia National Laboratories and Enviro Nuclear Services, LLC.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Minerals
Direct disposal of dual-purpose canisters (DPC) has been proposed to streamline the disposal of spent nuclear fuel. However, there are scenarios where direct disposal of DPCs may result in temperatures in excess of the specified upper temperature limits for some engineered barrier system (EBS) materials, which may cause alteration within EBS materials dependent on local conditions such as host rock composition, chemistry of the saturating groundwaters, and interactions between barrier materials themselves. Here we report the results of hydrothermal experiments reacting EBS materials—bentonite buffer and steel—with an analogue crystalline host rock and groundwater at 250 °C. Experiment series explored the effect of reaction time on the final products and the effects of the mineral and fluid reactants on different steel types. Post-mortem X-ray diffraction, electron microprobe, and scanning electron microscopy analyses showed characteristic alteration of both bentonite and steel, including the formation of secondary zeolite and calcium silicate hydrate minerals within the bentonite matrix and the formation of iron-bearing clays and metal oxides at the steel surfaces. Swelling clays in the bentonite matrix were not quantitatively altered to non-swelling clay species by the hydrothermal conditions. The combined results of the solution chemistry over time and post-mortem mineralogy suggest that EBS alteration is more sensitive to initial groundwater chemistry than the presence of host rock, where limited potassium concentration in the solution prohibits conversion of the smectite minerals in the bentonite matrix to non-swelling clay species.
Scientific Reports
Rock, concrete, and other engineered materials are often composed of several minerals that change volumetrically in response to variations in the moisture content of the local environment. Such differential shrinkage is caused by varying shrinkage rates between mineral compositions during dehydration. Using both 3D X-ray imaging of geo-architected samples and peridynamic (PD) numerical simulations, we show that the spatial distribution of the clay affects the crack network geometry with distributed clay particles yielding the most complex crack networks and percent damage (99.56%), along with a 60% reduction in material strength. We also demonstrate that crack formation, growth, coalescence, and distribution during dehydration, are controlled by the differential shrinkage rates between a highly shrinkable clay and a homogeneous mortar matrix. Sensitivity tests performed with the PD models show a clay shrinkage parameter of 0.4 yields considerable damage, and reductions in the parameter can result in a significant reduction in fracturing and an increase in material strength. Additionally, isolated clay inclusions induced localized fracturing predominantly due to debonding between the clay and matrix. These insights indicate differential shrinkage is a source of potential failure in natural and engineered barriers used to sequester anthropogenic waste.
This report describes research and development (R&D) activities conducted during Fiscal Year 2022 (FY22) specifically related to the Engineered Barrier System (EBS) R&D Work Package in the Spent Fuel Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). The R&D activities focus on understanding EBS component evolution and interactions within the EBS, as well as interactions between the host media and the EBS. The R&D team represented in this report consists of individuals from Sandia National Laboratories, Lawrence Berkeley National Laboratory (LBNL), Los Alamos National Laboratory (LANL), and Vanderbilt University. EBS R&D work also leverages international collaborations to ensure that the DOE program is active and abreast of the latest advances in nuclear waste disposal.